Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvcsbv Structured version   Unicode version

Theorem cbvcsbv 3258
 Description: Change the bound variable of a proper substitution into a class using implicit substitution. (Contributed by NM, 30-Sep-2008.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypothesis
Ref Expression
cbvcsbv.1
Assertion
Ref Expression
cbvcsbv
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   (,)   ()   ()

Proof of Theorem cbvcsbv
StepHypRef Expression
1 nfcv 2574 . 2
2 nfcv 2574 . 2
3 cbvcsbv.1 . 2
41, 2, 3cbvcsb 3257 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1653  csb 3253 This theorem is referenced by:  cdleme40v  31268 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-sbc 3164  df-csb 3254
 Copyright terms: Public domain W3C validator