Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbveu Structured version   Unicode version

Theorem cbveu 2301
 Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 25-Nov-1994.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
cbveu.1
cbveu.2
cbveu.3
Assertion
Ref Expression
cbveu

Proof of Theorem cbveu
StepHypRef Expression
1 cbveu.1 . . 3
21sb8eu 2299 . 2
3 cbveu.2 . . . 4
4 cbveu.3 . . . 4
53, 4sbie 2149 . . 3
65eubii 2290 . 2
72, 6bitri 241 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177  wnf 1553  wsb 1658  weu 2281 This theorem is referenced by:  cbvmo  2318  cbvreu  2930  cbvreucsf  3313  tz6.12f  5749  f1ompt  5891  climeu  12349 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285
 Copyright terms: Public domain W3C validator