Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvex2v Structured version   Unicode version

Theorem cbvex2v 1994
 Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 26-Jul-1995.)
Hypothesis
Ref Expression
cbval2v.1
Assertion
Ref Expression
cbvex2v
Distinct variable groups:   ,,   ,,   ,   ,
Allowed substitution hints:   (,)   (,)

Proof of Theorem cbvex2v
StepHypRef Expression
1 nfv 1630 . 2
2 nfv 1630 . 2
3 nfv 1630 . 2
4 nfv 1630 . 2
5 cbval2v.1 . 2
61, 2, 3, 4, 5cbvex2 1992 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178   wa 360  wex 1551 This theorem is referenced by:  cbvex4v  1997  2mo  2360  2eu6  2367  th3qlem1  7011 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951 This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555
 Copyright terms: Public domain W3C validator