Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbviotav Structured version   Unicode version

Theorem cbviotav 5416
 Description: Change bound variables in a description binder. (Contributed by Andrew Salmon, 1-Aug-2011.)
Hypothesis
Ref Expression
cbviotav.1
Assertion
Ref Expression
cbviotav
Distinct variable groups:   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem cbviotav
StepHypRef Expression
1 cbviotav.1 . 2
2 nfv 1629 . 2
3 nfv 1629 . 2
41, 2, 3cbviota 5415 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wceq 1652  cio 5408 This theorem is referenced by:  oeeui  6837 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-rex 2703  df-sn 3812  df-uni 4008  df-iota 5410
 Copyright terms: Public domain W3C validator