Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbviun Structured version   Unicode version

Theorem cbviun 4120
 Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 26-Mar-2006.) (Revised by Andrew Salmon, 25-Jul-2011.)
Hypotheses
Ref Expression
cbviun.1
cbviun.2
cbviun.3
Assertion
Ref Expression
cbviun
Distinct variable groups:   ,   ,
Allowed substitution hints:   (,)   (,)

Proof of Theorem cbviun
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 cbviun.1 . . . . 5
21nfcri 2565 . . . 4
3 cbviun.2 . . . . 5
43nfcri 2565 . . . 4
5 cbviun.3 . . . . 5
65eleq2d 2502 . . . 4
72, 4, 6cbvrex 2921 . . 3
87abbii 2547 . 2
9 df-iun 4087 . 2
10 df-iun 4087 . 2
118, 9, 103eqtr4i 2465 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1652   wcel 1725  cab 2421  wnfc 2558  wrex 2698  ciun 4085 This theorem is referenced by:  cbviunv  4122  disjxiun  4201  funiunfvf  5988  mpt2mptsx  6406  dmmpt2ssx  6408  fmpt2x  6409  ovmptss  6420  iunfi  7386  fsum2dlem  12546  fsumcom2  12550  fsumiun  12592  gsumcom2  15541  fiuncmp  17459  ovolfiniun  19389  ovoliunlem3  19392  ovoliun  19393  finiunmbl  19430  volfiniun  19433  iunmbl  19439  limciun  19773  fprod2dlem  25296  fprodcom2  25300 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-rex 2703  df-iun 4087
 Copyright terms: Public domain W3C validator