Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvmo Structured version   Unicode version

Theorem cbvmo 2317
 Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 9-Mar-1995.) (Revised by Andrew Salmon, 8-Jun-2011.)
Hypotheses
Ref Expression
cbvmo.1
cbvmo.2
cbvmo.3
Assertion
Ref Expression
cbvmo

Proof of Theorem cbvmo
StepHypRef Expression
1 cbvmo.1 . . . 4
2 cbvmo.2 . . . 4
3 cbvmo.3 . . . 4
41, 2, 3cbvex 1983 . . 3
51, 2, 3cbveu 2300 . . 3
64, 5imbi12i 317 . 2
7 df-mo 2285 . 2
8 df-mo 2285 . 2
96, 7, 83bitr4i 269 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177  wex 1550  wnf 1553  weu 2280  wmo 2281 This theorem is referenced by:  dffun6f  5460  opabiotafun  6528  2ndcdisj  17511  cbvdisjf  24007 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285
 Copyright terms: Public domain W3C validator