MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvmpt2 Unicode version

Theorem cbvmpt2 6110
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by NM, 17-Dec-2013.)
Hypotheses
Ref Expression
cbvmpt2.1  |-  F/_ z C
cbvmpt2.2  |-  F/_ w C
cbvmpt2.3  |-  F/_ x D
cbvmpt2.4  |-  F/_ y D
cbvmpt2.5  |-  ( ( x  =  z  /\  y  =  w )  ->  C  =  D )
Assertion
Ref Expression
cbvmpt2  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( z  e.  A ,  w  e.  B  |->  D )
Distinct variable groups:    x, w, y, z, A    w, B, x, y, z
Allowed substitution hints:    C( x, y, z, w)    D( x, y, z, w)

Proof of Theorem cbvmpt2
StepHypRef Expression
1 nfcv 2540 . 2  |-  F/_ z B
2 nfcv 2540 . 2  |-  F/_ x B
3 cbvmpt2.1 . 2  |-  F/_ z C
4 cbvmpt2.2 . 2  |-  F/_ w C
5 cbvmpt2.3 . 2  |-  F/_ x D
6 cbvmpt2.4 . 2  |-  F/_ y D
7 eqidd 2405 . 2  |-  ( x  =  z  ->  B  =  B )
8 cbvmpt2.5 . 2  |-  ( ( x  =  z  /\  y  =  w )  ->  C  =  D )
91, 2, 3, 4, 5, 6, 7, 8cbvmpt2x 6109 1  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( z  e.  A ,  w  e.  B  |->  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649   F/_wnfc 2527    e. cmpt2 6042
This theorem is referenced by:  cbvmpt2v  6111  fmpt2co  6389  xpf1o  7228  cnfcomlem  7612  fseqenlem1  7861  gsumdixp  15670  evlslem4  16519  cnmpt2t  17658  cnmptk2  17671  fmucnd  18275  fsum2cn  18854  relexpsucr  25083  fmuldfeqlem1  27579
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-rab 2675  df-v 2918  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-opab 4227  df-oprab 6044  df-mpt2 6045
  Copyright terms: Public domain W3C validator