Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvopab1v Structured version   Unicode version

Theorem cbvopab1v 4281
 Description: Rule used to change the first bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Eric Schmidt, 4-Apr-2007.)
Hypothesis
Ref Expression
cbvopab1v.1
Assertion
Ref Expression
cbvopab1v
Distinct variable groups:   ,   ,   ,   ,
Allowed substitution hints:   (,)   (,)

Proof of Theorem cbvopab1v
StepHypRef Expression
1 nfv 1629 . 2
2 nfv 1629 . 2
3 cbvopab1v.1 . 2
41, 2, 3cbvopab1 4278 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wceq 1652  copab 4265 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-opab 4267
 Copyright terms: Public domain W3C validator