MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvopab2 Unicode version

Theorem cbvopab2 4106
Description: Change second bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 22-Aug-2013.)
Hypotheses
Ref Expression
cbvopab2.1  |-  F/ z
ph
cbvopab2.2  |-  F/ y ps
cbvopab2.3  |-  ( y  =  z  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvopab2  |-  { <. x ,  y >.  |  ph }  =  { <. x ,  z >.  |  ps }
Distinct variable group:    x, y, z
Allowed substitution hints:    ph( x, y, z)    ps( x, y, z)

Proof of Theorem cbvopab2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 nfv 1609 . . . . . 6  |-  F/ z  w  =  <. x ,  y >.
2 cbvopab2.1 . . . . . 6  |-  F/ z
ph
31, 2nfan 1783 . . . . 5  |-  F/ z ( w  =  <. x ,  y >.  /\  ph )
4 nfv 1609 . . . . . 6  |-  F/ y  w  =  <. x ,  z >.
5 cbvopab2.2 . . . . . 6  |-  F/ y ps
64, 5nfan 1783 . . . . 5  |-  F/ y ( w  =  <. x ,  z >.  /\  ps )
7 opeq2 3813 . . . . . . 7  |-  ( y  =  z  ->  <. x ,  y >.  =  <. x ,  z >. )
87eqeq2d 2307 . . . . . 6  |-  ( y  =  z  ->  (
w  =  <. x ,  y >.  <->  w  =  <. x ,  z >.
) )
9 cbvopab2.3 . . . . . 6  |-  ( y  =  z  ->  ( ph 
<->  ps ) )
108, 9anbi12d 691 . . . . 5  |-  ( y  =  z  ->  (
( w  =  <. x ,  y >.  /\  ph ) 
<->  ( w  =  <. x ,  z >.  /\  ps ) ) )
113, 6, 10cbvex 1938 . . . 4  |-  ( E. y ( w  = 
<. x ,  y >.  /\  ph )  <->  E. z
( w  =  <. x ,  z >.  /\  ps ) )
1211exbii 1572 . . 3  |-  ( E. x E. y ( w  =  <. x ,  y >.  /\  ph ) 
<->  E. x E. z
( w  =  <. x ,  z >.  /\  ps ) )
1312abbii 2408 . 2  |-  { w  |  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) }  =  {
w  |  E. x E. z ( w  = 
<. x ,  z >.  /\  ps ) }
14 df-opab 4094 . 2  |-  { <. x ,  y >.  |  ph }  =  { w  |  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) }
15 df-opab 4094 . 2  |-  { <. x ,  z >.  |  ps }  =  { w  |  E. x E. z
( w  =  <. x ,  z >.  /\  ps ) }
1613, 14, 153eqtr4i 2326 1  |-  { <. x ,  y >.  |  ph }  =  { <. x ,  z >.  |  ps }
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1531   F/wnf 1534    = wceq 1632   {cab 2282   <.cop 3656   {copab 4092
This theorem is referenced by:  cbvoprab3  5938
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-opab 4094
  Copyright terms: Public domain W3C validator