MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvoprab12 Unicode version

Theorem cbvoprab12 5936
Description: Rule used to change first two bound variables in an operation abstraction, using implicit substitution. (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Hypotheses
Ref Expression
cbvoprab12.1  |-  F/ w ph
cbvoprab12.2  |-  F/ v
ph
cbvoprab12.3  |-  F/ x ps
cbvoprab12.4  |-  F/ y ps
cbvoprab12.5  |-  ( ( x  =  w  /\  y  =  v )  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
cbvoprab12  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. <. w ,  v >. ,  z
>.  |  ps }
Distinct variable group:    x, y, z, w, v
Allowed substitution hints:    ph( x, y, z, w, v)    ps( x, y, z, w, v)

Proof of Theorem cbvoprab12
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 nfv 1609 . . . . 5  |-  F/ w  u  =  <. x ,  y >.
2 cbvoprab12.1 . . . . 5  |-  F/ w ph
31, 2nfan 1783 . . . 4  |-  F/ w
( u  =  <. x ,  y >.  /\  ph )
4 nfv 1609 . . . . 5  |-  F/ v  u  =  <. x ,  y >.
5 cbvoprab12.2 . . . . 5  |-  F/ v
ph
64, 5nfan 1783 . . . 4  |-  F/ v ( u  =  <. x ,  y >.  /\  ph )
7 nfv 1609 . . . . 5  |-  F/ x  u  =  <. w ,  v >.
8 cbvoprab12.3 . . . . 5  |-  F/ x ps
97, 8nfan 1783 . . . 4  |-  F/ x
( u  =  <. w ,  v >.  /\  ps )
10 nfv 1609 . . . . 5  |-  F/ y  u  =  <. w ,  v >.
11 cbvoprab12.4 . . . . 5  |-  F/ y ps
1210, 11nfan 1783 . . . 4  |-  F/ y ( u  =  <. w ,  v >.  /\  ps )
13 opeq12 3814 . . . . . 6  |-  ( ( x  =  w  /\  y  =  v )  -> 
<. x ,  y >.  =  <. w ,  v
>. )
1413eqeq2d 2307 . . . . 5  |-  ( ( x  =  w  /\  y  =  v )  ->  ( u  =  <. x ,  y >.  <->  u  =  <. w ,  v >.
) )
15 cbvoprab12.5 . . . . 5  |-  ( ( x  =  w  /\  y  =  v )  ->  ( ph  <->  ps )
)
1614, 15anbi12d 691 . . . 4  |-  ( ( x  =  w  /\  y  =  v )  ->  ( ( u  = 
<. x ,  y >.  /\  ph )  <->  ( u  =  <. w ,  v
>.  /\  ps ) ) )
173, 6, 9, 12, 16cbvex2 1958 . . 3  |-  ( E. x E. y ( u  =  <. x ,  y >.  /\  ph ) 
<->  E. w E. v
( u  =  <. w ,  v >.  /\  ps ) )
1817opabbii 4099 . 2  |-  { <. u ,  z >.  |  E. x E. y ( u  =  <. x ,  y
>.  /\  ph ) }  =  { <. u ,  z >.  |  E. w E. v ( u  =  <. w ,  v
>.  /\  ps ) }
19 dfoprab2 5911 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. u ,  z >.  |  E. x E. y ( u  =  <. x ,  y
>.  /\  ph ) }
20 dfoprab2 5911 . 2  |-  { <. <.
w ,  v >. ,  z >.  |  ps }  =  { <. u ,  z >.  |  E. w E. v ( u  =  <. w ,  v
>.  /\  ps ) }
2118, 19, 203eqtr4i 2326 1  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. <. w ,  v >. ,  z
>.  |  ps }
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1531   F/wnf 1534    = wceq 1632   <.cop 3656   {copab 4092   {coprab 5875
This theorem is referenced by:  cbvoprab12v  5937  cbvmpt2x  5940  dfoprab4f  6194  fmpt2x  6206  tposoprab  6286
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-opab 4094  df-oprab 5878
  Copyright terms: Public domain W3C validator