MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvoprab12v Structured version   Unicode version

Theorem cbvoprab12v 6147
Description: Rule used to change first two bound variables in an operation abstraction, using implicit substitution. (Contributed by NM, 8-Oct-2004.)
Hypothesis
Ref Expression
cbvoprab12v.1  |-  ( ( x  =  w  /\  y  =  v )  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
cbvoprab12v  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. <. w ,  v >. ,  z
>.  |  ps }
Distinct variable groups:    x, y,
z, w, v    ph, w, v    ps, x, y
Allowed substitution hints:    ph( x, y, z)    ps( z, w, v)

Proof of Theorem cbvoprab12v
StepHypRef Expression
1 nfv 1629 . 2  |-  F/ w ph
2 nfv 1629 . 2  |-  F/ v
ph
3 nfv 1629 . 2  |-  F/ x ps
4 nfv 1629 . 2  |-  F/ y ps
5 cbvoprab12v.1 . 2  |-  ( ( x  =  w  /\  y  =  v )  ->  ( ph  <->  ps )
)
61, 2, 3, 4, 5cbvoprab12 6146 1  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. <. w ,  v >. ,  z
>.  |  ps }
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652   {coprab 6082
This theorem is referenced by:  cpnnen  12828
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-opab 4267  df-oprab 6085
  Copyright terms: Public domain W3C validator