Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvoprab12v Structured version   Unicode version

Theorem cbvoprab12v 6147
 Description: Rule used to change first two bound variables in an operation abstraction, using implicit substitution. (Contributed by NM, 8-Oct-2004.)
Hypothesis
Ref Expression
cbvoprab12v.1
Assertion
Ref Expression
cbvoprab12v
Distinct variable groups:   ,,,,   ,,   ,,
Allowed substitution hints:   (,,)   (,,)

Proof of Theorem cbvoprab12v
StepHypRef Expression
1 nfv 1629 . 2
2 nfv 1629 . 2
3 nfv 1629 . 2
4 nfv 1629 . 2
5 cbvoprab12v.1 . 2
61, 2, 3, 4, 5cbvoprab12 6146 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359   wceq 1652  coprab 6082 This theorem is referenced by:  cpnnen  12828 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-opab 4267  df-oprab 6085
 Copyright terms: Public domain W3C validator