Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvprodi Unicode version

Theorem cbvprodi 25415
Description: Change bound variable in a finite composite. (Contributed by FL, 19-Sep-2011.) (Revised by Mario Carneiro, 26-May-2014.)
Hypotheses
Ref Expression
cbvprod.1  |-  F/_ k B
cbvprod.2  |-  F/_ j C
cbvprod.3  |-  ( j  =  k  ->  B  =  C )
Assertion
Ref Expression
cbvprodi  |-  prod_ j  e.  A G B  = 
prod_ k  e.  A G C

Proof of Theorem cbvprodi
Dummy variables  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cbvprod.1 . . . . . . . . . . 11  |-  F/_ k B
2 cbvprod.2 . . . . . . . . . . 11  |-  F/_ j C
3 cbvprod.3 . . . . . . . . . . 11  |-  ( j  =  k  ->  B  =  C )
41, 2, 3cbvmpt 4126 . . . . . . . . . 10  |-  ( j  e.  _V  |->  B )  =  ( k  e. 
_V  |->  C )
5 seqeq3 11067 . . . . . . . . . 10  |-  ( ( j  e.  _V  |->  B )  =  ( k  e.  _V  |->  C )  ->  seq  m ( G ,  ( j  e.  _V  |->  B ) )  =  seq  m ( G ,  ( k  e.  _V  |->  C ) ) )
64, 5ax-mp 8 . . . . . . . . 9  |-  seq  m
( G ,  ( j  e.  _V  |->  B ) )  =  seq  m ( G , 
( k  e.  _V  |->  C ) )
76fveq1i 5542 . . . . . . . 8  |-  (  seq  m ( G , 
( j  e.  _V  |->  B ) ) `  n )  =  (  seq  m ( G ,  ( k  e. 
_V  |->  C ) ) `
 n )
87eleq2i 2360 . . . . . . 7  |-  ( x  e.  (  seq  m
( G ,  ( j  e.  _V  |->  B ) ) `  n
)  <->  x  e.  (  seq  m ( G , 
( k  e.  _V  |->  C ) ) `  n ) )
98anbi2i 675 . . . . . 6  |-  ( ( A  =  ( m ... n )  /\  x  e.  (  seq  m ( G , 
( j  e.  _V  |->  B ) ) `  n ) )  <->  ( A  =  ( m ... n )  /\  x  e.  (  seq  m ( G ,  ( k  e.  _V  |->  C ) ) `  n ) ) )
109rexbii 2581 . . . . 5  |-  ( E. n  e.  ( ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  e.  (  seq  m ( G ,  ( j  e.  _V  |->  B ) ) `  n ) )  <->  E. n  e.  (
ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  e.  (  seq  m ( G , 
( k  e.  _V  |->  C ) ) `  n ) ) )
1110exbii 1572 . . . 4  |-  ( E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  x  e.  (  seq  m ( G ,  ( j  e. 
_V  |->  B ) ) `
 n ) )  <->  E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  x  e.  (  seq  m ( G ,  ( k  e. 
_V  |->  C ) ) `
 n ) ) )
1211abbii 2408 . . 3  |-  { x  |  E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  x  e.  (  seq  m ( G ,  ( j  e. 
_V  |->  B ) ) `
 n ) ) }  =  { x  |  E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  x  e.  (  seq  m ( G ,  ( k  e. 
_V  |->  C ) ) `
 n ) ) }
13 ifeq2 3583 . . 3  |-  ( { x  |  E. m E. n  e.  ( ZZ>=
`  m ) ( A  =  ( m ... n )  /\  x  e.  (  seq  m ( G , 
( j  e.  _V  |->  B ) ) `  n ) ) }  =  { x  |  E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  x  e.  (  seq  m ( G ,  ( k  e. 
_V  |->  C ) ) `
 n ) ) }  ->  if ( A  =  (/) ,  (GId
`  G ) ,  { x  |  E. m E. n  e.  (
ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  e.  (  seq  m ( G , 
( j  e.  _V  |->  B ) ) `  n ) ) } )  =  if ( A  =  (/) ,  (GId
`  G ) ,  { x  |  E. m E. n  e.  (
ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  e.  (  seq  m ( G , 
( k  e.  _V  |->  C ) ) `  n ) ) } ) )
1412, 13ax-mp 8 . 2  |-  if ( A  =  (/) ,  (GId
`  G ) ,  { x  |  E. m E. n  e.  (
ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  e.  (  seq  m ( G , 
( j  e.  _V  |->  B ) ) `  n ) ) } )  =  if ( A  =  (/) ,  (GId
`  G ) ,  { x  |  E. m E. n  e.  (
ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  e.  (  seq  m ( G , 
( k  e.  _V  |->  C ) ) `  n ) ) } )
15 df-prod 25402 . 2  |-  prod_ j  e.  A G B  =  if ( A  =  (/) ,  (GId `  G
) ,  { x  |  E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  x  e.  (  seq  m ( G ,  ( j  e. 
_V  |->  B ) ) `
 n ) ) } )
16 df-prod 25402 . 2  |-  prod_ k  e.  A G C  =  if ( A  =  (/) ,  (GId `  G
) ,  { x  |  E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  x  e.  (  seq  m ( G ,  ( k  e. 
_V  |->  C ) ) `
 n ) ) } )
1714, 15, 163eqtr4i 2326 1  |-  prod_ j  e.  A G B  = 
prod_ k  e.  A G C
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   E.wex 1531    = wceq 1632    e. wcel 1696   {cab 2282   F/_wnfc 2419   E.wrex 2557   _Vcvv 2801   (/)c0 3468   ifcif 3578    e. cmpt 4093   ` cfv 5271  (class class class)co 5874   ZZ>=cuz 10246   ...cfz 10798    seq cseq 11062  GIdcgi 20870   prod_cprd 25401
This theorem is referenced by:  prodeqfv  25421  fprodserf  25424  fprod1s  25428  fprodp1s  25430
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-cnv 4713  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-recs 6404  df-rdg 6439  df-seq 11063  df-prod 25402
  Copyright terms: Public domain W3C validator