Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvrab Structured version   Unicode version

Theorem cbvrab 2956
 Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 9-Oct-2016.)
Hypotheses
Ref Expression
cbvrab.1
cbvrab.2
cbvrab.3
cbvrab.4
cbvrab.5
Assertion
Ref Expression
cbvrab

Proof of Theorem cbvrab
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 nfv 1630 . . . 4
2 cbvrab.1 . . . . . 6
32nfcri 2568 . . . . 5
4 nfs1v 2184 . . . . 5
53, 4nfan 1847 . . . 4
6 eleq1 2498 . . . . 5
7 sbequ12 1945 . . . . 5
86, 7anbi12d 693 . . . 4
91, 5, 8cbvab 2556 . . 3
10 cbvrab.2 . . . . . 6
1110nfcri 2568 . . . . 5
12 cbvrab.3 . . . . . 6
1312nfsb 2187 . . . . 5
1411, 13nfan 1847 . . . 4
15 nfv 1630 . . . 4
16 eleq1 2498 . . . . 5
17 sbequ 2113 . . . . . 6
18 cbvrab.4 . . . . . . 7
19 cbvrab.5 . . . . . . 7
2018, 19sbie 2152 . . . . . 6
2117, 20syl6bb 254 . . . . 5
2216, 21anbi12d 693 . . . 4
2314, 15, 22cbvab 2556 . . 3
249, 23eqtri 2458 . 2
25 df-rab 2716 . 2
26 df-rab 2716 . 2
2724, 25, 263eqtr4i 2468 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178   wa 360  wnf 1554   wceq 1653  wsb 1659   wcel 1726  cab 2424  wnfc 2561  crab 2711 This theorem is referenced by:  cbvrabv  2957  elrabsf  3201  tfis  4837  scottexs  7816  scott0s  7817  elmptrab  17864  suppss2f  24054  eq0rabdioph  26849  rexrabdioph  26868  rexfrabdioph  26869  elnn0rabdioph  26877  dvdsrabdioph  26884  stoweidlem34  27773  stoweidlem59  27798  bnj1534  29298 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-rab 2716
 Copyright terms: Public domain W3C validator