Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvral2 Structured version   Unicode version

Theorem cbvral2 28038
Description: Change bound variables of double restricted universal quantification, using implicit substitution, analogous to cbvral2v 2949. (Contributed by Alexander van der Vekens, 2-Jul-2017.)
Hypotheses
Ref Expression
cbvral2.1  |-  F/ z
ph
cbvral2.2  |-  F/ x ch
cbvral2.3  |-  F/ w ch
cbvral2.4  |-  F/ y ps
cbvral2.5  |-  ( x  =  z  ->  ( ph 
<->  ch ) )
cbvral2.6  |-  ( y  =  w  ->  ( ch 
<->  ps ) )
Assertion
Ref Expression
cbvral2  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. z  e.  A  A. w  e.  B  ps )
Distinct variable groups:    x, A    z, A    x, y, B   
y, z, B    w, B
Allowed substitution hints:    ph( x, y, z, w)    ps( x, y, z, w)    ch( x, y, z, w)    A( y, w)

Proof of Theorem cbvral2
StepHypRef Expression
1 nfcv 2579 . . . 4  |-  F/_ z B
2 cbvral2.1 . . . 4  |-  F/ z
ph
31, 2nfral 2766 . . 3  |-  F/ z A. y  e.  B  ph
4 nfcv 2579 . . . 4  |-  F/_ x B
5 cbvral2.2 . . . 4  |-  F/ x ch
64, 5nfral 2766 . . 3  |-  F/ x A. y  e.  B  ch
7 cbvral2.5 . . . 4  |-  ( x  =  z  ->  ( ph 
<->  ch ) )
87ralbidv 2732 . . 3  |-  ( x  =  z  ->  ( A. y  e.  B  ph  <->  A. y  e.  B  ch ) )
93, 6, 8cbvral 2937 . 2  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. z  e.  A  A. y  e.  B  ch )
10 cbvral2.3 . . . 4  |-  F/ w ch
11 cbvral2.4 . . . 4  |-  F/ y ps
12 cbvral2.6 . . . 4  |-  ( y  =  w  ->  ( ch 
<->  ps ) )
1310, 11, 12cbvral 2937 . . 3  |-  ( A. y  e.  B  ch  <->  A. w  e.  B  ps )
1413ralbii 2736 . 2  |-  ( A. z  e.  A  A. y  e.  B  ch  <->  A. z  e.  A  A. w  e.  B  ps )
159, 14bitri 242 1  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. z  e.  A  A. w  e.  B  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178   F/wnf 1554   A.wral 2712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1628  ax-9 1669  ax-8 1690  ax-6 1747  ax-7 1752  ax-11 1764  ax-12 1954  ax-ext 2424
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1661  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ral 2717
  Copyright terms: Public domain W3C validator