Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvraldva Structured version   Unicode version

Theorem cbvraldva 2938
 Description: Rule used to change the bound variable in a restricted universal quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
cbvraldva.1
Assertion
Ref Expression
cbvraldva
Distinct variable groups:   ,   ,   ,,   ,,
Allowed substitution hints:   ()   ()

Proof of Theorem cbvraldva
StepHypRef Expression
1 cbvraldva.1 . 2
2 eqidd 2437 . 2
31, 2cbvraldva2 2936 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359  wral 2705 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1551  df-nf 1554  df-cleq 2429  df-clel 2432  df-ral 2710
 Copyright terms: Public domain W3C validator