MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvralv2 Unicode version

Theorem cbvralv2 3233
Description: Rule used to change the bound variable in a restricted universal quantifier with implicit substitution which also changes the quantifier domain. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
cbvralv2.1  |-  ( x  =  y  ->  ( ps 
<->  ch ) )
cbvralv2.2  |-  ( x  =  y  ->  A  =  B )
Assertion
Ref Expression
cbvralv2  |-  ( A. x  e.  A  ps  <->  A. y  e.  B  ch )
Distinct variable groups:    y, A    ps, y    x, B    ch, x
Allowed substitution hints:    ps( x)    ch( y)    A( x)    B( y)

Proof of Theorem cbvralv2
StepHypRef Expression
1 nfcv 2502 . 2  |-  F/_ y A
2 nfcv 2502 . 2  |-  F/_ x B
3 nfv 1624 . 2  |-  F/ y ps
4 nfv 1624 . 2  |-  F/ x ch
5 cbvralv2.2 . 2  |-  ( x  =  y  ->  A  =  B )
6 cbvralv2.1 . 2  |-  ( x  =  y  ->  ( ps 
<->  ch ) )
71, 2, 3, 4, 5, 6cbvralcsf 3229 1  |-  ( A. x  e.  A  ps  <->  A. y  e.  B  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1647   A.wral 2628
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ral 2633  df-sbc 3078  df-csb 3168
  Copyright terms: Public domain W3C validator