MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvreucsf Structured version   Unicode version

Theorem cbvreucsf 3315
Description: A more general version of cbvreuv 2936 that has no distinct variable rextrictions. Changes bound variables using implicit substitution. (Contributed by Andrew Salmon, 13-Jul-2011.)
Hypotheses
Ref Expression
cbvralcsf.1  |-  F/_ y A
cbvralcsf.2  |-  F/_ x B
cbvralcsf.3  |-  F/ y
ph
cbvralcsf.4  |-  F/ x ps
cbvralcsf.5  |-  ( x  =  y  ->  A  =  B )
cbvralcsf.6  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvreucsf  |-  ( E! x  e.  A  ph  <->  E! y  e.  B  ps )

Proof of Theorem cbvreucsf
Dummy variables  v 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1630 . . . 4  |-  F/ z ( x  e.  A  /\  ph )
2 nfcsb1v 3285 . . . . . 6  |-  F/_ x [_ z  /  x ]_ A
32nfcri 2568 . . . . 5  |-  F/ x  z  e.  [_ z  /  x ]_ A
4 nfs1v 2184 . . . . 5  |-  F/ x [ z  /  x ] ph
53, 4nfan 1847 . . . 4  |-  F/ x
( z  e.  [_ z  /  x ]_ A  /\  [ z  /  x ] ph )
6 id 21 . . . . . 6  |-  ( x  =  z  ->  x  =  z )
7 csbeq1a 3261 . . . . . 6  |-  ( x  =  z  ->  A  =  [_ z  /  x ]_ A )
86, 7eleq12d 2506 . . . . 5  |-  ( x  =  z  ->  (
x  e.  A  <->  z  e.  [_ z  /  x ]_ A ) )
9 sbequ12 1945 . . . . 5  |-  ( x  =  z  ->  ( ph 
<->  [ z  /  x ] ph ) )
108, 9anbi12d 693 . . . 4  |-  ( x  =  z  ->  (
( x  e.  A  /\  ph )  <->  ( z  e.  [_ z  /  x ]_ A  /\  [ z  /  x ] ph ) ) )
111, 5, 10cbveu 2303 . . 3  |-  ( E! x ( x  e.  A  /\  ph )  <->  E! z ( z  e. 
[_ z  /  x ]_ A  /\  [ z  /  x ] ph ) )
12 nfcv 2574 . . . . . . 7  |-  F/_ y
z
13 cbvralcsf.1 . . . . . . 7  |-  F/_ y A
1412, 13nfcsb 3287 . . . . . 6  |-  F/_ y [_ z  /  x ]_ A
1514nfcri 2568 . . . . 5  |-  F/ y  z  e.  [_ z  /  x ]_ A
16 cbvralcsf.3 . . . . . 6  |-  F/ y
ph
1716nfsb 2187 . . . . 5  |-  F/ y [ z  /  x ] ph
1815, 17nfan 1847 . . . 4  |-  F/ y ( z  e.  [_ z  /  x ]_ A  /\  [ z  /  x ] ph )
19 nfv 1630 . . . 4  |-  F/ z ( y  e.  B  /\  ps )
20 id 21 . . . . . 6  |-  ( z  =  y  ->  z  =  y )
21 csbeq1 3256 . . . . . . 7  |-  ( z  =  y  ->  [_ z  /  x ]_ A  = 
[_ y  /  x ]_ A )
22 sbsbc 3167 . . . . . . . . 9  |-  ( [ y  /  x ]
v  e.  A  <->  [. y  /  x ]. v  e.  A
)
2322abbii 2550 . . . . . . . 8  |-  { v  |  [ y  /  x ] v  e.  A }  =  { v  |  [. y  /  x ]. v  e.  A }
24 cbvralcsf.2 . . . . . . . . . . . 12  |-  F/_ x B
2524nfcri 2568 . . . . . . . . . . 11  |-  F/ x  v  e.  B
26 cbvralcsf.5 . . . . . . . . . . . 12  |-  ( x  =  y  ->  A  =  B )
2726eleq2d 2505 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
v  e.  A  <->  v  e.  B ) )
2825, 27sbie 2151 . . . . . . . . . 10  |-  ( [ y  /  x ]
v  e.  A  <->  v  e.  B )
2928bicomi 195 . . . . . . . . 9  |-  ( v  e.  B  <->  [ y  /  x ] v  e.  A )
3029abbi2i 2549 . . . . . . . 8  |-  B  =  { v  |  [
y  /  x ]
v  e.  A }
31 df-csb 3254 . . . . . . . 8  |-  [_ y  /  x ]_ A  =  { v  |  [. y  /  x ]. v  e.  A }
3223, 30, 313eqtr4ri 2469 . . . . . . 7  |-  [_ y  /  x ]_ A  =  B
3321, 32syl6eq 2486 . . . . . 6  |-  ( z  =  y  ->  [_ z  /  x ]_ A  =  B )
3420, 33eleq12d 2506 . . . . 5  |-  ( z  =  y  ->  (
z  e.  [_ z  /  x ]_ A  <->  y  e.  B ) )
35 sbequ 2113 . . . . . 6  |-  ( z  =  y  ->  ( [ z  /  x ] ph  <->  [ y  /  x ] ph ) )
36 cbvralcsf.4 . . . . . . 7  |-  F/ x ps
37 cbvralcsf.6 . . . . . . 7  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
3836, 37sbie 2151 . . . . . 6  |-  ( [ y  /  x ] ph 
<->  ps )
3935, 38syl6bb 254 . . . . 5  |-  ( z  =  y  ->  ( [ z  /  x ] ph  <->  ps ) )
4034, 39anbi12d 693 . . . 4  |-  ( z  =  y  ->  (
( z  e.  [_ z  /  x ]_ A  /\  [ z  /  x ] ph )  <->  ( y  e.  B  /\  ps )
) )
4118, 19, 40cbveu 2303 . . 3  |-  ( E! z ( z  e. 
[_ z  /  x ]_ A  /\  [ z  /  x ] ph ) 
<->  E! y ( y  e.  B  /\  ps ) )
4211, 41bitri 242 . 2  |-  ( E! x ( x  e.  A  /\  ph )  <->  E! y ( y  e.  B  /\  ps )
)
43 df-reu 2714 . 2  |-  ( E! x  e.  A  ph  <->  E! x ( x  e.  A  /\  ph )
)
44 df-reu 2714 . 2  |-  ( E! y  e.  B  ps  <->  E! y ( y  e.  B  /\  ps )
)
4542, 43, 443bitr4i 270 1  |-  ( E! x  e.  A  ph  <->  E! y  e.  B  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360   F/wnf 1554    = wceq 1653   [wsb 1659    e. wcel 1726   E!weu 2283   {cab 2424   F/_wnfc 2561   E!wreu 2709   [.wsbc 3163   [_csb 3253
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-reu 2714  df-sbc 3164  df-csb 3254
  Copyright terms: Public domain W3C validator