Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvreuv Structured version   Unicode version

Theorem cbvreuv 2934
 Description: Change the bound variable of a restricted uniqueness quantifier using implicit substitution. (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
cbvralv.1
Assertion
Ref Expression
cbvreuv
Distinct variable groups:   ,   ,   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem cbvreuv
StepHypRef Expression
1 nfv 1629 . 2
2 nfv 1629 . 2
3 cbvralv.1 . 2
41, 2, 3cbvreu 2930 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177  wreu 2707 This theorem is referenced by:  reu8  3130  aceq1  7998  aceq2  8000  fin23lem27  8208  divalglem10  12922  lspsneu  16195  lshpsmreu  29907 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-cleq 2429  df-clel 2432  df-reu 2712
 Copyright terms: Public domain W3C validator