Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvrexdva Structured version   Unicode version

Theorem cbvrexdva 2941
 Description: Rule used to change the bound variable in a restricted existential quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
cbvraldva.1
Assertion
Ref Expression
cbvrexdva
Distinct variable groups:   ,   ,   ,,   ,,
Allowed substitution hints:   ()   ()

Proof of Theorem cbvrexdva
StepHypRef Expression
1 cbvraldva.1 . 2
2 eqidd 2439 . 2
31, 2cbvrexdva2 2939 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178   wa 360  wrex 2708 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1552  df-nf 1555  df-cleq 2431  df-clel 2434  df-rex 2713
 Copyright terms: Public domain W3C validator