Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvrexf Structured version   Unicode version

Theorem cbvrexf 2929
 Description: Rule used to change bound variables, using implicit substitution. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 9-Oct-2016.)
Hypotheses
Ref Expression
cbvralf.1
cbvralf.2
cbvralf.3
cbvralf.4
cbvralf.5
Assertion
Ref Expression
cbvrexf

Proof of Theorem cbvrexf
StepHypRef Expression
1 cbvralf.1 . . . 4
2 cbvralf.2 . . . 4
3 cbvralf.3 . . . . 5
43nfn 1812 . . . 4
5 cbvralf.4 . . . . 5
65nfn 1812 . . . 4
7 cbvralf.5 . . . . 5
87notbid 287 . . . 4
91, 2, 4, 6, 8cbvralf 2928 . . 3
109notbii 289 . 2
11 dfrex2 2720 . 2
12 dfrex2 2720 . 2
1310, 11, 123bitr4i 270 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wb 178  wnf 1554  wnfc 2561  wral 2707  wrex 2708 This theorem is referenced by:  cbvrex  2931  reusv2lem4  4730  reusv2  4732  nnwof  10548  dfimafnf  24048  indexa  26449  evth2f  27676  fvelrnbf  27679  evthf  27688  stoweidlem34  27773  bnj1400  29281 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ral 2712  df-rex 2713
 Copyright terms: Public domain W3C validator