MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvriotav Structured version   Unicode version

Theorem cbvriotav 6553
Description: Change bound variable in a restricted description binder. (Contributed by NM, 18-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
cbvriotav.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvriotav  |-  ( iota_ x  e.  A ph )  =  ( iota_ y  e.  A ps )
Distinct variable groups:    x, A    y, A    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem cbvriotav
StepHypRef Expression
1 nfv 1629 . 2  |-  F/ y
ph
2 nfv 1629 . 2  |-  F/ x ps
3 cbvriotav.1 . 2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
41, 2, 3cbvriota 6552 1  |-  ( iota_ x  e.  A ph )  =  ( iota_ y  e.  A ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    = wceq 1652   iota_crio 6534
This theorem is referenced by:  ordtypecbv  7478  fin23lem27  8200  zorn2g  8375  usgraidx2v  21404  cnlnadji  23571  nmopadjlei  23583  cvmliftlem15  24977  cvmliftiota  24980  cvmlift2  24995  cvmlift3lem7  25004  cvmlift3  25007  lshpkrlem3  29847  cdleme40v  31203  lcfl7N  32236  lcf1o  32286  lcfrlem39  32316  hdmap1cbv  32538
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-iota 5410  df-fv 5454  df-riota 6541
  Copyright terms: Public domain W3C validator