Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvrmov Structured version   Unicode version

Theorem cbvrmov 2937
 Description: Change the bound variable of a restricted uniqueness quantifier using implicit substitution. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Hypothesis
Ref Expression
cbvralv.1
Assertion
Ref Expression
cbvrmov
Distinct variable groups:   ,   ,   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem cbvrmov
StepHypRef Expression
1 nfv 1630 . 2
2 nfv 1630 . 2
3 cbvralv.1 . 2
41, 2, 3cbvrmo 2933 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178  wrmo 2710 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715
 Copyright terms: Public domain W3C validator