MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatfn Unicode version

Theorem ccatfn 11427
Description: The concatenation operator is a two-argument function. (Contributed by Mario Carneiro, 27-Sep-2015.)
Assertion
Ref Expression
ccatfn  |- concat  Fn  ( _V  X.  _V )

Proof of Theorem ccatfn
Dummy variables  t 
s  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-concat 11410 . 2  |- concat  =  ( s  e.  _V , 
t  e.  _V  |->  ( x  e.  ( 0..^ ( ( # `  s
)  +  ( # `  t ) ) ) 
|->  if ( x  e.  ( 0..^ ( # `  s ) ) ,  ( s `  x
) ,  ( t `
 ( x  -  ( # `  s ) ) ) ) ) )
2 eqid 2283 . . . 4  |-  ( x  e.  ( 0..^ ( ( # `  s
)  +  ( # `  t ) ) ) 
|->  if ( x  e.  ( 0..^ ( # `  s ) ) ,  ( s `  x
) ,  ( t `
 ( x  -  ( # `  s ) ) ) ) )  =  ( x  e.  ( 0..^ ( (
# `  s )  +  ( # `  t
) ) )  |->  if ( x  e.  ( 0..^ ( # `  s
) ) ,  ( s `  x ) ,  ( t `  ( x  -  ( # `
 s ) ) ) ) )
3 ssun1 3338 . . . . . . 7  |-  ( ran  s  u.  { (/) } )  C_  ( ( ran  s  u.  { (/) } )  u.  ( ran  t  u.  { (/) } ) )
4 fvrn0 5550 . . . . . . 7  |-  ( s `
 x )  e.  ( ran  s  u. 
{ (/) } )
53, 4sselii 3177 . . . . . 6  |-  ( s `
 x )  e.  ( ( ran  s  u.  { (/) } )  u.  ( ran  t  u. 
{ (/) } ) )
6 ssun2 3339 . . . . . . 7  |-  ( ran  t  u.  { (/) } )  C_  ( ( ran  s  u.  { (/) } )  u.  ( ran  t  u.  { (/) } ) )
7 fvrn0 5550 . . . . . . 7  |-  ( t `
 ( x  -  ( # `  s ) ) )  e.  ( ran  t  u.  { (/)
} )
86, 7sselii 3177 . . . . . 6  |-  ( t `
 ( x  -  ( # `  s ) ) )  e.  ( ( ran  s  u. 
{ (/) } )  u.  ( ran  t  u. 
{ (/) } ) )
95, 8keepel 3622 . . . . 5  |-  if ( x  e.  ( 0..^ ( # `  s
) ) ,  ( s `  x ) ,  ( t `  ( x  -  ( # `
 s ) ) ) )  e.  ( ( ran  s  u. 
{ (/) } )  u.  ( ran  t  u. 
{ (/) } ) )
109a1i 10 . . . 4  |-  ( x  e.  ( 0..^ ( ( # `  s
)  +  ( # `  t ) ) )  ->  if ( x  e.  ( 0..^ (
# `  s )
) ,  ( s `
 x ) ,  ( t `  (
x  -  ( # `  s ) ) ) )  e.  ( ( ran  s  u.  { (/)
} )  u.  ( ran  t  u.  { (/) } ) ) )
112, 10fmpti 5683 . . 3  |-  ( x  e.  ( 0..^ ( ( # `  s
)  +  ( # `  t ) ) ) 
|->  if ( x  e.  ( 0..^ ( # `  s ) ) ,  ( s `  x
) ,  ( t `
 ( x  -  ( # `  s ) ) ) ) ) : ( 0..^ ( ( # `  s
)  +  ( # `  t ) ) ) --> ( ( ran  s  u.  { (/) } )  u.  ( ran  t  u. 
{ (/) } ) )
12 ovex 5883 . . 3  |-  ( 0..^ ( ( # `  s
)  +  ( # `  t ) ) )  e.  _V
13 vex 2791 . . . . . 6  |-  s  e. 
_V
1413rnex 4942 . . . . 5  |-  ran  s  e.  _V
15 p0ex 4197 . . . . 5  |-  { (/) }  e.  _V
1614, 15unex 4518 . . . 4  |-  ( ran  s  u.  { (/) } )  e.  _V
17 vex 2791 . . . . . 6  |-  t  e. 
_V
1817rnex 4942 . . . . 5  |-  ran  t  e.  _V
1918, 15unex 4518 . . . 4  |-  ( ran  t  u.  { (/) } )  e.  _V
2016, 19unex 4518 . . 3  |-  ( ( ran  s  u.  { (/)
} )  u.  ( ran  t  u.  { (/) } ) )  e.  _V
21 fex2 5401 . . 3  |-  ( ( ( x  e.  ( 0..^ ( ( # `  s )  +  (
# `  t )
) )  |->  if ( x  e.  ( 0..^ ( # `  s
) ) ,  ( s `  x ) ,  ( t `  ( x  -  ( # `
 s ) ) ) ) ) : ( 0..^ ( (
# `  s )  +  ( # `  t
) ) ) --> ( ( ran  s  u. 
{ (/) } )  u.  ( ran  t  u. 
{ (/) } ) )  /\  ( 0..^ ( ( # `  s
)  +  ( # `  t ) ) )  e.  _V  /\  (
( ran  s  u.  {
(/) } )  u.  ( ran  t  u.  { (/) } ) )  e.  _V )  ->  ( x  e.  ( 0..^ ( (
# `  s )  +  ( # `  t
) ) )  |->  if ( x  e.  ( 0..^ ( # `  s
) ) ,  ( s `  x ) ,  ( t `  ( x  -  ( # `
 s ) ) ) ) )  e. 
_V )
2211, 12, 20, 21mp3an 1277 . 2  |-  ( x  e.  ( 0..^ ( ( # `  s
)  +  ( # `  t ) ) ) 
|->  if ( x  e.  ( 0..^ ( # `  s ) ) ,  ( s `  x
) ,  ( t `
 ( x  -  ( # `  s ) ) ) ) )  e.  _V
231, 22fnmpt2i 6193 1  |- concat  Fn  ( _V  X.  _V )
Colors of variables: wff set class
Syntax hints:    e. wcel 1684   _Vcvv 2788    u. cun 3150   (/)c0 3455   ifcif 3565   {csn 3640    e. cmpt 4077    X. cxp 4687   ran crn 4690    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858   0cc0 8737    + caddc 8740    - cmin 9037  ..^cfzo 10870   #chash 11337   concat cconcat 11404
This theorem is referenced by:  frmdplusg  14476
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-concat 11410
  Copyright terms: Public domain W3C validator