MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatfval Unicode version

Theorem ccatfval 11518
Description: Value of the concatenation operator. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
ccatfval  |-  ( ( S  e.  V  /\  T  e.  W )  ->  ( S concat  T )  =  ( x  e.  ( 0..^ ( (
# `  S )  +  ( # `  T
) ) )  |->  if ( x  e.  ( 0..^ ( # `  S
) ) ,  ( S `  x ) ,  ( T `  ( x  -  ( # `
 S ) ) ) ) ) )
Distinct variable groups:    x, S    x, T    x, V    x, W

Proof of Theorem ccatfval
Dummy variables  t 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2872 . 2  |-  ( S  e.  V  ->  S  e.  _V )
2 elex 2872 . 2  |-  ( T  e.  W  ->  T  e.  _V )
3 fveq2 5605 . . . . . 6  |-  ( s  =  S  ->  ( # `
 s )  =  ( # `  S
) )
4 fveq2 5605 . . . . . 6  |-  ( t  =  T  ->  ( # `
 t )  =  ( # `  T
) )
53, 4oveqan12d 5961 . . . . 5  |-  ( ( s  =  S  /\  t  =  T )  ->  ( ( # `  s
)  +  ( # `  t ) )  =  ( ( # `  S
)  +  ( # `  T ) ) )
65oveq2d 5958 . . . 4  |-  ( ( s  =  S  /\  t  =  T )  ->  ( 0..^ ( (
# `  s )  +  ( # `  t
) ) )  =  ( 0..^ ( (
# `  S )  +  ( # `  T
) ) ) )
73oveq2d 5958 . . . . . . 7  |-  ( s  =  S  ->  (
0..^ ( # `  s
) )  =  ( 0..^ ( # `  S
) ) )
87eleq2d 2425 . . . . . 6  |-  ( s  =  S  ->  (
x  e.  ( 0..^ ( # `  s
) )  <->  x  e.  ( 0..^ ( # `  S
) ) ) )
98adantr 451 . . . . 5  |-  ( ( s  =  S  /\  t  =  T )  ->  ( x  e.  ( 0..^ ( # `  s
) )  <->  x  e.  ( 0..^ ( # `  S
) ) ) )
10 fveq1 5604 . . . . . 6  |-  ( s  =  S  ->  (
s `  x )  =  ( S `  x ) )
1110adantr 451 . . . . 5  |-  ( ( s  =  S  /\  t  =  T )  ->  ( s `  x
)  =  ( S `
 x ) )
12 simpr 447 . . . . . 6  |-  ( ( s  =  S  /\  t  =  T )  ->  t  =  T )
133oveq2d 5958 . . . . . . 7  |-  ( s  =  S  ->  (
x  -  ( # `  s ) )  =  ( x  -  ( # `
 S ) ) )
1413adantr 451 . . . . . 6  |-  ( ( s  =  S  /\  t  =  T )  ->  ( x  -  ( # `
 s ) )  =  ( x  -  ( # `  S ) ) )
1512, 14fveq12d 5611 . . . . 5  |-  ( ( s  =  S  /\  t  =  T )  ->  ( t `  (
x  -  ( # `  s ) ) )  =  ( T `  ( x  -  ( # `
 S ) ) ) )
169, 11, 15ifbieq12d 3663 . . . 4  |-  ( ( s  =  S  /\  t  =  T )  ->  if ( x  e.  ( 0..^ ( # `  s ) ) ,  ( s `  x
) ,  ( t `
 ( x  -  ( # `  s ) ) ) )  =  if ( x  e.  ( 0..^ ( # `  S ) ) ,  ( S `  x
) ,  ( T `
 ( x  -  ( # `  S ) ) ) ) )
176, 16mpteq12dv 4177 . . 3  |-  ( ( s  =  S  /\  t  =  T )  ->  ( x  e.  ( 0..^ ( ( # `  s )  +  (
# `  t )
) )  |->  if ( x  e.  ( 0..^ ( # `  s
) ) ,  ( s `  x ) ,  ( t `  ( x  -  ( # `
 s ) ) ) ) )  =  ( x  e.  ( 0..^ ( ( # `  S )  +  (
# `  T )
) )  |->  if ( x  e.  ( 0..^ ( # `  S
) ) ,  ( S `  x ) ,  ( T `  ( x  -  ( # `
 S ) ) ) ) ) )
18 df-concat 11500 . . 3  |- concat  =  ( s  e.  _V , 
t  e.  _V  |->  ( x  e.  ( 0..^ ( ( # `  s
)  +  ( # `  t ) ) ) 
|->  if ( x  e.  ( 0..^ ( # `  s ) ) ,  ( s `  x
) ,  ( t `
 ( x  -  ( # `  s ) ) ) ) ) )
19 ovex 5967 . . . 4  |-  ( 0..^ ( ( # `  S
)  +  ( # `  T ) ) )  e.  _V
2019mptex 5829 . . 3  |-  ( x  e.  ( 0..^ ( ( # `  S
)  +  ( # `  T ) ) ) 
|->  if ( x  e.  ( 0..^ ( # `  S ) ) ,  ( S `  x
) ,  ( T `
 ( x  -  ( # `  S ) ) ) ) )  e.  _V
2117, 18, 20ovmpt2a 6062 . 2  |-  ( ( S  e.  _V  /\  T  e.  _V )  ->  ( S concat  T )  =  ( x  e.  ( 0..^ ( (
# `  S )  +  ( # `  T
) ) )  |->  if ( x  e.  ( 0..^ ( # `  S
) ) ,  ( S `  x ) ,  ( T `  ( x  -  ( # `
 S ) ) ) ) ) )
221, 2, 21syl2an 463 1  |-  ( ( S  e.  V  /\  T  e.  W )  ->  ( S concat  T )  =  ( x  e.  ( 0..^ ( (
# `  S )  +  ( # `  T
) ) )  |->  if ( x  e.  ( 0..^ ( # `  S
) ) ,  ( S `  x ) ,  ( T `  ( x  -  ( # `
 S ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1642    e. wcel 1710   _Vcvv 2864   ifcif 3641    e. cmpt 4156   ` cfv 5334  (class class class)co 5942   0cc0 8824    + caddc 8827    - cmin 9124  ..^cfzo 10959   #chash 11427   concat cconcat 11494
This theorem is referenced by:  ccatcl  11519  ccatlen  11520  ccatval1  11521  ccatval2  11522  ccatco  11580
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4210  ax-sep 4220  ax-nul 4228  ax-pr 4293
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3907  df-iun 3986  df-br 4103  df-opab 4157  df-mpt 4158  df-id 4388  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-concat 11500
  Copyright terms: Public domain W3C validator