MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatopth Unicode version

Theorem ccatopth 11462
Description: An opth 4245-like theorem for recovering the two halves of a concatenated word. (Contributed by Mario Carneiro, 1-Oct-2015.)
Assertion
Ref Expression
ccatopth  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  A
)  =  ( # `  C ) )  -> 
( ( A concat  B
)  =  ( C concat  D )  <->  ( A  =  C  /\  B  =  D ) ) )

Proof of Theorem ccatopth
StepHypRef Expression
1 oveq1 5865 . . . 4  |-  ( ( A concat  B )  =  ( C concat  D )  ->  ( ( A concat  B ) substr  <. 0 ,  ( # `  A
) >. )  =  ( ( C concat  D ) substr  <. 0 ,  ( # `  A ) >. )
)
2 swrdccat1 11460 . . . . . 6  |-  ( ( A  e. Word  X  /\  B  e. Word  X )  ->  ( ( A concat  B
) substr  <. 0 ,  (
# `  A ) >. )  =  A )
323ad2ant1 976 . . . . 5  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  A
)  =  ( # `  C ) )  -> 
( ( A concat  B
) substr  <. 0 ,  (
# `  A ) >. )  =  A )
4 simp3 957 . . . . . . . 8  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  A
)  =  ( # `  C ) )  -> 
( # `  A )  =  ( # `  C
) )
54opeq2d 3803 . . . . . . 7  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  A
)  =  ( # `  C ) )  ->  <. 0 ,  ( # `  A ) >.  =  <. 0 ,  ( # `  C
) >. )
65oveq2d 5874 . . . . . 6  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  A
)  =  ( # `  C ) )  -> 
( ( C concat  D
) substr  <. 0 ,  (
# `  A ) >. )  =  ( ( C concat  D ) substr  <. 0 ,  ( # `  C
) >. ) )
7 swrdccat1 11460 . . . . . . 7  |-  ( ( C  e. Word  X  /\  D  e. Word  X )  ->  ( ( C concat  D
) substr  <. 0 ,  (
# `  C ) >. )  =  C )
873ad2ant2 977 . . . . . 6  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  A
)  =  ( # `  C ) )  -> 
( ( C concat  D
) substr  <. 0 ,  (
# `  C ) >. )  =  C )
96, 8eqtrd 2315 . . . . 5  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  A
)  =  ( # `  C ) )  -> 
( ( C concat  D
) substr  <. 0 ,  (
# `  A ) >. )  =  C )
103, 9eqeq12d 2297 . . . 4  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  A
)  =  ( # `  C ) )  -> 
( ( ( A concat  B ) substr  <. 0 ,  ( # `  A
) >. )  =  ( ( C concat  D ) substr  <. 0 ,  ( # `  A ) >. )  <->  A  =  C ) )
111, 10syl5ib 210 . . 3  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  A
)  =  ( # `  C ) )  -> 
( ( A concat  B
)  =  ( C concat  D )  ->  A  =  C ) )
12 simpr 447 . . . . . 6  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( # `
 A )  =  ( # `  C
) )  /\  ( A concat  B )  =  ( C concat  D ) )  ->  ( A concat  B
)  =  ( C concat  D ) )
13 simpl3 960 . . . . . . 7  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( # `
 A )  =  ( # `  C
) )  /\  ( A concat  B )  =  ( C concat  D ) )  ->  ( # `  A
)  =  ( # `  C ) )
1412fveq2d 5529 . . . . . . . 8  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( # `
 A )  =  ( # `  C
) )  /\  ( A concat  B )  =  ( C concat  D ) )  ->  ( # `  ( A concat  B ) )  =  ( # `  ( C concat  D ) ) )
15 simpl1 958 . . . . . . . . 9  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( # `
 A )  =  ( # `  C
) )  /\  ( A concat  B )  =  ( C concat  D ) )  ->  ( A  e. Word  X  /\  B  e. Word  X
) )
16 ccatlen 11430 . . . . . . . . 9  |-  ( ( A  e. Word  X  /\  B  e. Word  X )  ->  ( # `  ( A concat  B ) )  =  ( ( # `  A
)  +  ( # `  B ) ) )
1715, 16syl 15 . . . . . . . 8  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( # `
 A )  =  ( # `  C
) )  /\  ( A concat  B )  =  ( C concat  D ) )  ->  ( # `  ( A concat  B ) )  =  ( ( # `  A
)  +  ( # `  B ) ) )
18 simpl2 959 . . . . . . . . 9  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( # `
 A )  =  ( # `  C
) )  /\  ( A concat  B )  =  ( C concat  D ) )  ->  ( C  e. Word  X  /\  D  e. Word  X
) )
19 ccatlen 11430 . . . . . . . . 9  |-  ( ( C  e. Word  X  /\  D  e. Word  X )  ->  ( # `  ( C concat  D ) )  =  ( ( # `  C
)  +  ( # `  D ) ) )
2018, 19syl 15 . . . . . . . 8  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( # `
 A )  =  ( # `  C
) )  /\  ( A concat  B )  =  ( C concat  D ) )  ->  ( # `  ( C concat  D ) )  =  ( ( # `  C
)  +  ( # `  D ) ) )
2114, 17, 203eqtr3d 2323 . . . . . . 7  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( # `
 A )  =  ( # `  C
) )  /\  ( A concat  B )  =  ( C concat  D ) )  ->  ( ( # `  A )  +  (
# `  B )
)  =  ( (
# `  C )  +  ( # `  D
) ) )
2213, 21opeq12d 3804 . . . . . 6  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( # `
 A )  =  ( # `  C
) )  /\  ( A concat  B )  =  ( C concat  D ) )  ->  <. ( # `  A
) ,  ( (
# `  A )  +  ( # `  B
) ) >.  =  <. (
# `  C ) ,  ( ( # `  C )  +  (
# `  D )
) >. )
2312, 22oveq12d 5876 . . . . 5  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( # `
 A )  =  ( # `  C
) )  /\  ( A concat  B )  =  ( C concat  D ) )  ->  ( ( A concat  B ) substr  <. ( # `  A ) ,  ( ( # `  A
)  +  ( # `  B ) ) >.
)  =  ( ( C concat  D ) substr  <. (
# `  C ) ,  ( ( # `  C )  +  (
# `  D )
) >. ) )
24 swrdccat2 11461 . . . . . 6  |-  ( ( A  e. Word  X  /\  B  e. Word  X )  ->  ( ( A concat  B
) substr  <. ( # `  A
) ,  ( (
# `  A )  +  ( # `  B
) ) >. )  =  B )
2515, 24syl 15 . . . . 5  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( # `
 A )  =  ( # `  C
) )  /\  ( A concat  B )  =  ( C concat  D ) )  ->  ( ( A concat  B ) substr  <. ( # `  A ) ,  ( ( # `  A
)  +  ( # `  B ) ) >.
)  =  B )
26 swrdccat2 11461 . . . . . 6  |-  ( ( C  e. Word  X  /\  D  e. Word  X )  ->  ( ( C concat  D
) substr  <. ( # `  C
) ,  ( (
# `  C )  +  ( # `  D
) ) >. )  =  D )
2718, 26syl 15 . . . . 5  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( # `
 A )  =  ( # `  C
) )  /\  ( A concat  B )  =  ( C concat  D ) )  ->  ( ( C concat  D ) substr  <. ( # `  C ) ,  ( ( # `  C
)  +  ( # `  D ) ) >.
)  =  D )
2823, 25, 273eqtr3d 2323 . . . 4  |-  ( ( ( ( A  e. Word  X  /\  B  e. Word  X
)  /\  ( C  e. Word  X  /\  D  e. Word  X )  /\  ( # `
 A )  =  ( # `  C
) )  /\  ( A concat  B )  =  ( C concat  D ) )  ->  B  =  D )
2928ex 423 . . 3  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  A
)  =  ( # `  C ) )  -> 
( ( A concat  B
)  =  ( C concat  D )  ->  B  =  D ) )
3011, 29jcad 519 . 2  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  A
)  =  ( # `  C ) )  -> 
( ( A concat  B
)  =  ( C concat  D )  ->  ( A  =  C  /\  B  =  D )
) )
31 oveq12 5867 . 2  |-  ( ( A  =  C  /\  B  =  D )  ->  ( A concat  B )  =  ( C concat  D
) )
3230, 31impbid1 194 1  |-  ( ( ( A  e. Word  X  /\  B  e. Word  X )  /\  ( C  e. Word  X  /\  D  e. Word  X
)  /\  ( # `  A
)  =  ( # `  C ) )  -> 
( ( A concat  B
)  =  ( C concat  D )  <->  ( A  =  C  /\  B  =  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   <.cop 3643   ` cfv 5255  (class class class)co 5858   0cc0 8737    + caddc 8740   #chash 11337  Word cword 11403   concat cconcat 11404   substr csubstr 11406
This theorem is referenced by:  ccatopth2  11463  ccatlcan  11464  splval2  11472  efgredleme  15052  efgredlemc  15054
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-fzo 10871  df-hash 11338  df-word 11409  df-concat 11410  df-substr 11412
  Copyright terms: Public domain W3C validator