MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cctop Structured version   Unicode version

Theorem cctop 17075
Description: The countable complement topology on a set  A. Example 4 in [Munkres] p. 77. (Contributed by FL, 23-Aug-2006.) (Revised by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
cctop  |-  ( A  e.  V  ->  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  e.  (TopOn `  A ) )
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem cctop
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniss 4038 . . . . . . . 8  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  ->  U. y  C_  U. { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) } )
2 ssrab2 3430 . . . . . . . . 9  |-  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  C_  ~P A
3 sspwuni 4179 . . . . . . . . 9  |-  ( { x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  C_  ~P A  <->  U. { x  e.  ~P A  |  ( ( A  \  x )  ~<_  om  \/  x  =  (/) ) }  C_  A )
42, 3mpbi 201 . . . . . . . 8  |-  U. {
x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  C_  A
51, 4syl6ss 3362 . . . . . . 7  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  ->  U. y  C_  A )
6 vex 2961 . . . . . . . . 9  |-  y  e. 
_V
76uniex 4708 . . . . . . . 8  |-  U. y  e.  _V
87elpw 3807 . . . . . . 7  |-  ( U. y  e.  ~P A  <->  U. y  C_  A )
95, 8sylibr 205 . . . . . 6  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  ->  U. y  e.  ~P A
)
10 uni0c 4043 . . . . . . . . . . 11  |-  ( U. y  =  (/)  <->  A. z  e.  y  z  =  (/) )
1110notbii 289 . . . . . . . . . 10  |-  ( -. 
U. y  =  (/)  <->  -.  A. z  e.  y  z  =  (/) )
12 rexnal 2718 . . . . . . . . . 10  |-  ( E. z  e.  y  -.  z  =  (/)  <->  -.  A. z  e.  y  z  =  (/) )
1311, 12bitr4i 245 . . . . . . . . 9  |-  ( -. 
U. y  =  (/)  <->  E. z  e.  y  -.  z  =  (/) )
14 ssel2 3345 . . . . . . . . . . . . . . . . 17  |-  ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  y )  ->  z  e.  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) } )
15 difeq2 3461 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  z  ->  ( A  \  x )  =  ( A  \  z
) )
1615breq1d 4225 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  z  ->  (
( A  \  x
)  ~<_  om  <->  ( A  \ 
z )  ~<_  om )
)
17 eqeq1 2444 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  z  ->  (
x  =  (/)  <->  z  =  (/) ) )
1816, 17orbi12d 692 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  z  ->  (
( ( A  \  x )  ~<_  om  \/  x  =  (/) )  <->  ( ( A  \  z )  ~<_  om  \/  z  =  (/) ) ) )
1918elrab 3094 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  <->  ( z  e.  ~P A  /\  (
( A  \  z
)  ~<_  om  \/  z  =  (/) ) ) )
2014, 19sylib 190 . . . . . . . . . . . . . . . 16  |-  ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  y )  ->  ( z  e.  ~P A  /\  ( ( A 
\  z )  ~<_  om  \/  z  =  (/) ) ) )
2120simprd 451 . . . . . . . . . . . . . . 15  |-  ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  y )  ->  ( ( A  \ 
z )  ~<_  om  \/  z  =  (/) ) )
2221ord 368 . . . . . . . . . . . . . 14  |-  ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  y )  ->  ( -.  ( A 
\  z )  ~<_  om 
->  z  =  (/) ) )
2322con1d 119 . . . . . . . . . . . . 13  |-  ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  y )  ->  ( -.  z  =  (/)  ->  ( A  \ 
z )  ~<_  om )
)
2423imp 420 . . . . . . . . . . . 12  |-  ( ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  y )  /\  -.  z  =  (/) )  ->  ( A  \ 
z )  ~<_  om )
25 reldom 7118 . . . . . . . . . . . . . . . 16  |-  Rel  ~<_
2625brrelexi 4921 . . . . . . . . . . . . . . 15  |-  ( ( A  \  z )  ~<_  om  ->  ( A  \  z )  e.  _V )
2726adantl 454 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  C_  { x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  y )  /\  -.  z  =  (/) )  /\  ( A  \  z
)  ~<_  om )  ->  ( A  \  z )  e. 
_V )
28 simpllr 737 . . . . . . . . . . . . . . 15  |-  ( ( ( ( y  C_  { x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  y )  /\  -.  z  =  (/) )  /\  ( A  \  z
)  ~<_  om )  ->  z  e.  y )
29 elssuni 4045 . . . . . . . . . . . . . . 15  |-  ( z  e.  y  ->  z  C_ 
U. y )
30 sscon 3483 . . . . . . . . . . . . . . 15  |-  ( z 
C_  U. y  ->  ( A  \  U. y ) 
C_  ( A  \ 
z ) )
3128, 29, 303syl 19 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  C_  { x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  y )  /\  -.  z  =  (/) )  /\  ( A  \  z
)  ~<_  om )  ->  ( A  \  U. y ) 
C_  ( A  \ 
z ) )
32 ssdomg 7156 . . . . . . . . . . . . . 14  |-  ( ( A  \  z )  e.  _V  ->  (
( A  \  U. y )  C_  ( A  \  z )  -> 
( A  \  U. y )  ~<_  ( A 
\  z ) ) )
3327, 31, 32sylc 59 . . . . . . . . . . . . 13  |-  ( ( ( ( y  C_  { x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  y )  /\  -.  z  =  (/) )  /\  ( A  \  z
)  ~<_  om )  ->  ( A  \  U. y )  ~<_  ( A  \  z
) )
34 domtr 7163 . . . . . . . . . . . . 13  |-  ( ( ( A  \  U. y )  ~<_  ( A 
\  z )  /\  ( A  \  z
)  ~<_  om )  ->  ( A  \  U. y )  ~<_  om )
3533, 34sylancom 650 . . . . . . . . . . . 12  |-  ( ( ( ( y  C_  { x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  y )  /\  -.  z  =  (/) )  /\  ( A  \  z
)  ~<_  om )  ->  ( A  \  U. y )  ~<_  om )
3624, 35mpdan 651 . . . . . . . . . . 11  |-  ( ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  y )  /\  -.  z  =  (/) )  ->  ( A  \  U. y )  ~<_  om )
3736exp31 589 . . . . . . . . . 10  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  ->  ( z  e.  y  -> 
( -.  z  =  (/)  ->  ( A  \  U. y )  ~<_  om )
) )
3837rexlimdv 2831 . . . . . . . . 9  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  ->  ( E. z  e.  y  -.  z  =  (/)  ->  ( A  \  U. y )  ~<_  om )
)
3913, 38syl5bi 210 . . . . . . . 8  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  ->  ( -.  U. y  =  (/)  ->  ( A  \  U. y )  ~<_  om )
)
4039con1d 119 . . . . . . 7  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  ->  ( -.  ( A  \  U. y )  ~<_  om  ->  U. y  =  (/) ) )
4140orrd 369 . . . . . 6  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  ->  ( ( A  \  U. y )  ~<_  om  \/  U. y  =  (/) ) )
42 difeq2 3461 . . . . . . . . 9  |-  ( x  =  U. y  -> 
( A  \  x
)  =  ( A 
\  U. y ) )
4342breq1d 4225 . . . . . . . 8  |-  ( x  =  U. y  -> 
( ( A  \  x )  ~<_  om  <->  ( A  \ 
U. y )  ~<_  om ) )
44 eqeq1 2444 . . . . . . . 8  |-  ( x  =  U. y  -> 
( x  =  (/)  <->  U. y  =  (/) ) )
4543, 44orbi12d 692 . . . . . . 7  |-  ( x  =  U. y  -> 
( ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) 
<->  ( ( A  \  U. y )  ~<_  om  \/  U. y  =  (/) ) ) )
4645elrab 3094 . . . . . 6  |-  ( U. y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  <->  ( U. y  e.  ~P A  /\  ( ( A  \  U. y )  ~<_  om  \/  U. y  =  (/) ) ) )
479, 41, 46sylanbrc 647 . . . . 5  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  ->  U. y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) } )
4847ax-gen 1556 . . . 4  |-  A. y
( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  ->  U. y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) } )
49 ssinss1 3571 . . . . . . . . 9  |-  ( y 
C_  A  ->  (
y  i^i  z )  C_  A )
506elpw 3807 . . . . . . . . 9  |-  ( y  e.  ~P A  <->  y  C_  A )
516inex1 4347 . . . . . . . . . 10  |-  ( y  i^i  z )  e. 
_V
5251elpw 3807 . . . . . . . . 9  |-  ( ( y  i^i  z )  e.  ~P A  <->  ( y  i^i  z )  C_  A
)
5349, 50, 523imtr4i 259 . . . . . . . 8  |-  ( y  e.  ~P A  -> 
( y  i^i  z
)  e.  ~P A
)
5453ad2antrr 708 . . . . . . 7  |-  ( ( ( y  e.  ~P A  /\  ( ( A 
\  y )  ~<_  om  \/  y  =  (/) ) )  /\  (
z  e.  ~P A  /\  ( ( A  \ 
z )  ~<_  om  \/  z  =  (/) ) ) )  ->  ( y  i^i  z )  e.  ~P A )
55 difindi 3597 . . . . . . . . . . 11  |-  ( A 
\  ( y  i^i  z ) )  =  ( ( A  \ 
y )  u.  ( A  \  z ) )
56 unctb 8090 . . . . . . . . . . 11  |-  ( ( ( A  \  y
)  ~<_  om  /\  ( A  \  z )  ~<_  om )  ->  ( ( A  \  y )  u.  ( A  \  z
) )  ~<_  om )
5755, 56syl5eqbr 4248 . . . . . . . . . 10  |-  ( ( ( A  \  y
)  ~<_  om  /\  ( A  \  z )  ~<_  om )  ->  ( A  \  ( y  i^i  z
) )  ~<_  om )
5857orcd 383 . . . . . . . . 9  |-  ( ( ( A  \  y
)  ~<_  om  /\  ( A  \  z )  ~<_  om )  ->  ( ( A  \  ( y  i^i  z ) )  ~<_  om  \/  ( y  i^i  z )  =  (/) ) )
59 ineq1 3537 . . . . . . . . . . 11  |-  ( y  =  (/)  ->  ( y  i^i  z )  =  ( (/)  i^i  z
) )
60 incom 3535 . . . . . . . . . . . 12  |-  ( (/)  i^i  z )  =  ( z  i^i  (/) )
61 in0 3655 . . . . . . . . . . . 12  |-  ( z  i^i  (/) )  =  (/)
6260, 61eqtri 2458 . . . . . . . . . . 11  |-  ( (/)  i^i  z )  =  (/)
6359, 62syl6eq 2486 . . . . . . . . . 10  |-  ( y  =  (/)  ->  ( y  i^i  z )  =  (/) )
6463olcd 384 . . . . . . . . 9  |-  ( y  =  (/)  ->  ( ( A  \  ( y  i^i  z ) )  ~<_  om  \/  ( y  i^i  z )  =  (/) ) )
65 ineq2 3538 . . . . . . . . . . 11  |-  ( z  =  (/)  ->  ( y  i^i  z )  =  ( y  i^i  (/) ) )
66 in0 3655 . . . . . . . . . . 11  |-  ( y  i^i  (/) )  =  (/)
6765, 66syl6eq 2486 . . . . . . . . . 10  |-  ( z  =  (/)  ->  ( y  i^i  z )  =  (/) )
6867olcd 384 . . . . . . . . 9  |-  ( z  =  (/)  ->  ( ( A  \  ( y  i^i  z ) )  ~<_  om  \/  ( y  i^i  z )  =  (/) ) )
6958, 64, 68ccase2 916 . . . . . . . 8  |-  ( ( ( ( A  \ 
y )  ~<_  om  \/  y  =  (/) )  /\  ( ( A  \ 
z )  ~<_  om  \/  z  =  (/) ) )  ->  ( ( A 
\  ( y  i^i  z ) )  ~<_  om  \/  ( y  i^i  z )  =  (/) ) )
7069ad2ant2l 728 . . . . . . 7  |-  ( ( ( y  e.  ~P A  /\  ( ( A 
\  y )  ~<_  om  \/  y  =  (/) ) )  /\  (
z  e.  ~P A  /\  ( ( A  \ 
z )  ~<_  om  \/  z  =  (/) ) ) )  ->  ( ( A  \  ( y  i^i  z ) )  ~<_  om  \/  ( y  i^i  z )  =  (/) ) )
7154, 70jca 520 . . . . . 6  |-  ( ( ( y  e.  ~P A  /\  ( ( A 
\  y )  ~<_  om  \/  y  =  (/) ) )  /\  (
z  e.  ~P A  /\  ( ( A  \ 
z )  ~<_  om  \/  z  =  (/) ) ) )  ->  ( (
y  i^i  z )  e.  ~P A  /\  (
( A  \  (
y  i^i  z )
)  ~<_  om  \/  (
y  i^i  z )  =  (/) ) ) )
72 difeq2 3461 . . . . . . . . . 10  |-  ( x  =  y  ->  ( A  \  x )  =  ( A  \  y
) )
7372breq1d 4225 . . . . . . . . 9  |-  ( x  =  y  ->  (
( A  \  x
)  ~<_  om  <->  ( A  \ 
y )  ~<_  om )
)
74 eqeq1 2444 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  =  (/)  <->  y  =  (/) ) )
7573, 74orbi12d 692 . . . . . . . 8  |-  ( x  =  y  ->  (
( ( A  \  x )  ~<_  om  \/  x  =  (/) )  <->  ( ( A  \  y )  ~<_  om  \/  y  =  (/) ) ) )
7675elrab 3094 . . . . . . 7  |-  ( y  e.  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  <->  ( y  e.  ~P A  /\  (
( A  \  y
)  ~<_  om  \/  y  =  (/) ) ) )
7776, 19anbi12i 680 . . . . . 6  |-  ( ( y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) } )  <-> 
( ( y  e. 
~P A  /\  (
( A  \  y
)  ~<_  om  \/  y  =  (/) ) )  /\  ( z  e.  ~P A  /\  ( ( A 
\  z )  ~<_  om  \/  z  =  (/) ) ) ) )
78 difeq2 3461 . . . . . . . . 9  |-  ( x  =  ( y  i^i  z )  ->  ( A  \  x )  =  ( A  \  (
y  i^i  z )
) )
7978breq1d 4225 . . . . . . . 8  |-  ( x  =  ( y  i^i  z )  ->  (
( A  \  x
)  ~<_  om  <->  ( A  \ 
( y  i^i  z
) )  ~<_  om )
)
80 eqeq1 2444 . . . . . . . 8  |-  ( x  =  ( y  i^i  z )  ->  (
x  =  (/)  <->  ( y  i^i  z )  =  (/) ) )
8179, 80orbi12d 692 . . . . . . 7  |-  ( x  =  ( y  i^i  z )  ->  (
( ( A  \  x )  ~<_  om  \/  x  =  (/) )  <->  ( ( A  \  ( y  i^i  z ) )  ~<_  om  \/  ( y  i^i  z )  =  (/) ) ) )
8281elrab 3094 . . . . . 6  |-  ( ( y  i^i  z )  e.  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  <->  ( (
y  i^i  z )  e.  ~P A  /\  (
( A  \  (
y  i^i  z )
)  ~<_  om  \/  (
y  i^i  z )  =  (/) ) ) )
8371, 77, 823imtr4i 259 . . . . 5  |-  ( ( y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) } )  ->  ( y  i^i  z )  e.  {
x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) } )
8483rgen2a 2774 . . . 4  |-  A. y  e.  { x  e.  ~P A  |  ( ( A  \  x )  ~<_  om  \/  x  =  (/) ) } A. z  e. 
{ x  e.  ~P A  |  ( ( A  \  x )  ~<_  om  \/  x  =  (/) ) }  ( y  i^i  z )  e.  {
x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }
8548, 84pm3.2i 443 . . 3  |-  ( A. y ( y  C_  { x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  ->  U. y  e.  { x  e.  ~P A  |  ( ( A  \  x )  ~<_  om  \/  x  =  (/) ) } )  /\  A. y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) } A. z  e.  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  (
y  i^i  z )  e.  { x  e.  ~P A  |  ( ( A  \  x )  ~<_  om  \/  x  =  (/) ) } )
86 pwexg 4386 . . . 4  |-  ( A  e.  V  ->  ~P A  e.  _V )
87 rabexg 4356 . . . 4  |-  ( ~P A  e.  _V  ->  { x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  e.  _V )
88 istopg 16973 . . . 4  |-  ( { x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  e.  _V  ->  ( { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  e.  Top 
<->  ( A. y ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  ->  U. y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) } )  /\  A. y  e. 
{ x  e.  ~P A  |  ( ( A  \  x )  ~<_  om  \/  x  =  (/) ) } A. z  e. 
{ x  e.  ~P A  |  ( ( A  \  x )  ~<_  om  \/  x  =  (/) ) }  ( y  i^i  z )  e.  {
x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) } ) ) )
8986, 87, 883syl 19 . . 3  |-  ( A  e.  V  ->  ( { x  e.  ~P A  |  ( ( A  \  x )  ~<_  om  \/  x  =  (/) ) }  e.  Top  <->  ( A. y ( y  C_  { x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  ->  U. y  e.  { x  e.  ~P A  |  ( ( A  \  x )  ~<_  om  \/  x  =  (/) ) } )  /\  A. y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) } A. z  e.  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  (
y  i^i  z )  e.  { x  e.  ~P A  |  ( ( A  \  x )  ~<_  om  \/  x  =  (/) ) } ) ) )
9085, 89mpbiri 226 . 2  |-  ( A  e.  V  ->  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  e.  Top )
91 pwidg 3813 . . . . 5  |-  ( A  e.  V  ->  A  e.  ~P A )
92 omex 7601 . . . . . . . 8  |-  om  e.  _V
93920dom 7240 . . . . . . 7  |-  (/)  ~<_  om
9493orci 381 . . . . . 6  |-  ( (/)  ~<_  om  \/  A  =  (/) )
9594a1i 11 . . . . 5  |-  ( A  e.  V  ->  ( (/)  ~<_  om  \/  A  =  (/) ) )
96 difeq2 3461 . . . . . . . . 9  |-  ( x  =  A  ->  ( A  \  x )  =  ( A  \  A
) )
97 difid 3698 . . . . . . . . 9  |-  ( A 
\  A )  =  (/)
9896, 97syl6eq 2486 . . . . . . . 8  |-  ( x  =  A  ->  ( A  \  x )  =  (/) )
9998breq1d 4225 . . . . . . 7  |-  ( x  =  A  ->  (
( A  \  x
)  ~<_  om  <->  (/)  ~<_  om ) )
100 eqeq1 2444 . . . . . . 7  |-  ( x  =  A  ->  (
x  =  (/)  <->  A  =  (/) ) )
10199, 100orbi12d 692 . . . . . 6  |-  ( x  =  A  ->  (
( ( A  \  x )  ~<_  om  \/  x  =  (/) )  <->  ( (/)  ~<_  om  \/  A  =  (/) ) ) )
102101elrab 3094 . . . . 5  |-  ( A  e.  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  <->  ( A  e.  ~P A  /\  ( (/)  ~<_  om  \/  A  =  (/) ) ) )
10391, 95, 102sylanbrc 647 . . . 4  |-  ( A  e.  V  ->  A  e.  { x  e.  ~P A  |  ( ( A  \  x )  ~<_  om  \/  x  =  (/) ) } )
104 elssuni 4045 . . . 4  |-  ( A  e.  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  ->  A 
C_  U. { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) } )
105103, 104syl 16 . . 3  |-  ( A  e.  V  ->  A  C_ 
U. { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) } )
1064a1i 11 . . 3  |-  ( A  e.  V  ->  U. {
x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  C_  A )
107105, 106eqssd 3367 . 2  |-  ( A  e.  V  ->  A  =  U. { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) } )
108 istopon 16995 . 2  |-  ( { x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  e.  (TopOn `  A )  <->  ( {
x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  e.  Top  /\  A  =  U. {
x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) } ) )
10990, 107, 108sylanbrc 647 1  |-  ( A  e.  V  ->  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  e.  (TopOn `  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    \/ wo 359    /\ wa 360   A.wal 1550    = wceq 1653    e. wcel 1726   A.wral 2707   E.wrex 2708   {crab 2711   _Vcvv 2958    \ cdif 3319    u. cun 3320    i^i cin 3321    C_ wss 3322   (/)c0 3630   ~Pcpw 3801   U.cuni 4017   class class class wbr 4215   omcom 4848   ` cfv 5457    ~<_ cdom 7110   Topctop 16963  TopOnctopon 16964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-inf2 7599
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-2o 6728  df-oadd 6731  df-er 6908  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-oi 7482  df-card 7831  df-cda 8053  df-top 16968  df-topon 16971
  Copyright terms: Public domain W3C validator