MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cdainflem Unicode version

Theorem cdainflem 8027
Description: Any partition of omega into two pieces (which may be disjoint) contains an infinite subset. (Contributed by Mario Carneiro, 11-Feb-2013.)
Assertion
Ref Expression
cdainflem  |-  ( ( A  u.  B ) 
~~  om  ->  ( A 
~~  om  \/  B  ~~  om ) )

Proof of Theorem cdainflem
StepHypRef Expression
1 unfi2 7335 . . . 4  |-  ( ( A  ~<  om  /\  B  ~<  om )  ->  ( A  u.  B )  ~<  om )
2 sdomnen 7095 . . . 4  |-  ( ( A  u.  B ) 
~<  om  ->  -.  ( A  u.  B )  ~~  om )
31, 2syl 16 . . 3  |-  ( ( A  ~<  om  /\  B  ~<  om )  ->  -.  ( A  u.  B
)  ~~  om )
43con2i 114 . 2  |-  ( ( A  u.  B ) 
~~  om  ->  -.  ( A  ~<  om  /\  B  ~<  om ) )
5 ianor 475 . . 3  |-  ( -.  ( A  ~<  om  /\  B  ~<  om )  <->  ( -.  A  ~<  om  \/  -.  B  ~<  om ) )
6 relen 7073 . . . . . . . . . 10  |-  Rel  ~~
76brrelexi 4877 . . . . . . . . 9  |-  ( ( A  u.  B ) 
~~  om  ->  ( A  u.  B )  e. 
_V )
8 ssun1 3470 . . . . . . . . 9  |-  A  C_  ( A  u.  B
)
9 ssdomg 7112 . . . . . . . . 9  |-  ( ( A  u.  B )  e.  _V  ->  ( A  C_  ( A  u.  B )  ->  A  ~<_  ( A  u.  B
) ) )
107, 8, 9ee10 1382 . . . . . . . 8  |-  ( ( A  u.  B ) 
~~  om  ->  A  ~<_  ( A  u.  B ) )
11 domentr 7125 . . . . . . . 8  |-  ( ( A  ~<_  ( A  u.  B )  /\  ( A  u.  B )  ~~  om )  ->  A  ~<_  om )
1210, 11mpancom 651 . . . . . . 7  |-  ( ( A  u.  B ) 
~~  om  ->  A  ~<_  om )
1312anim1i 552 . . . . . 6  |-  ( ( ( A  u.  B
)  ~~  om  /\  -.  A  ~<  om )  ->  ( A  ~<_  om  /\  -.  A  ~<  om ) )
14 bren2 7097 . . . . . 6  |-  ( A 
~~  om  <->  ( A  ~<_  om 
/\  -.  A  ~<  om ) )
1513, 14sylibr 204 . . . . 5  |-  ( ( ( A  u.  B
)  ~~  om  /\  -.  A  ~<  om )  ->  A  ~~  om )
1615ex 424 . . . 4  |-  ( ( A  u.  B ) 
~~  om  ->  ( -.  A  ~<  om  ->  A 
~~  om ) )
17 ssun2 3471 . . . . . . . . 9  |-  B  C_  ( A  u.  B
)
18 ssdomg 7112 . . . . . . . . 9  |-  ( ( A  u.  B )  e.  _V  ->  ( B  C_  ( A  u.  B )  ->  B  ~<_  ( A  u.  B
) ) )
197, 17, 18ee10 1382 . . . . . . . 8  |-  ( ( A  u.  B ) 
~~  om  ->  B  ~<_  ( A  u.  B ) )
20 domentr 7125 . . . . . . . 8  |-  ( ( B  ~<_  ( A  u.  B )  /\  ( A  u.  B )  ~~  om )  ->  B  ~<_  om )
2119, 20mpancom 651 . . . . . . 7  |-  ( ( A  u.  B ) 
~~  om  ->  B  ~<_  om )
2221anim1i 552 . . . . . 6  |-  ( ( ( A  u.  B
)  ~~  om  /\  -.  B  ~<  om )  ->  ( B  ~<_  om  /\  -.  B  ~<  om ) )
23 bren2 7097 . . . . . 6  |-  ( B 
~~  om  <->  ( B  ~<_  om 
/\  -.  B  ~<  om ) )
2422, 23sylibr 204 . . . . 5  |-  ( ( ( A  u.  B
)  ~~  om  /\  -.  B  ~<  om )  ->  B  ~~  om )
2524ex 424 . . . 4  |-  ( ( A  u.  B ) 
~~  om  ->  ( -.  B  ~<  om  ->  B 
~~  om ) )
2616, 25orim12d 812 . . 3  |-  ( ( A  u.  B ) 
~~  om  ->  ( ( -.  A  ~<  om  \/  -.  B  ~<  om )  ->  ( A  ~~  om  \/  B  ~~  om )
) )
275, 26syl5bi 209 . 2  |-  ( ( A  u.  B ) 
~~  om  ->  ( -.  ( A  ~<  om  /\  B  ~<  om )  ->  ( A  ~~  om  \/  B  ~~  om ) ) )
284, 27mpd 15 1  |-  ( ( A  u.  B ) 
~~  om  ->  ( A 
~~  om  \/  B  ~~  om ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 358    /\ wa 359    e. wcel 1721   _Vcvv 2916    u. cun 3278    C_ wss 3280   class class class wbr 4172   omcom 4804    ~~ cen 7065    ~<_ cdom 7066    ~< csdm 7067
This theorem is referenced by:  cdainf  8028
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-recs 6592  df-rdg 6627  df-oadd 6687  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072
  Copyright terms: Public domain W3C validator