Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cdeqab Structured version   Unicode version

Theorem cdeqab 3153
 Description: Distribute conditional equality over abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
cdeqnot.1 CondEq
Assertion
Ref Expression
cdeqab CondEq
Distinct variable groups:   ,   ,
Allowed substitution hints:   (,,)   (,,)

Proof of Theorem cdeqab
StepHypRef Expression
1 cdeqnot.1 . . . 4 CondEq
21cdeqri 3149 . . 3
32abbidv 2552 . 2
43cdeqi 3148 1 CondEq
 Colors of variables: wff set class Syntax hints:   wb 178   wceq 1653  cab 2424  CondEqwcdeq 3146 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-cdeq 3147
 Copyright terms: Public domain W3C validator