MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cdeqal Structured version   Unicode version

Theorem cdeqal 3152
Description: Distribute conditional equality over quantification. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
cdeqnot.1  |- CondEq ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cdeqal  |- CondEq ( x  =  y  ->  ( A. z ph  <->  A. z ps ) )
Distinct variable groups:    x, z    y, z
Allowed substitution hints:    ph( x, y, z)    ps( x, y, z)

Proof of Theorem cdeqal
StepHypRef Expression
1 cdeqnot.1 . . . 4  |- CondEq ( x  =  y  ->  ( ph 
<->  ps ) )
21cdeqri 3149 . . 3  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
32albidv 1636 . 2  |-  ( x  =  y  ->  ( A. z ph  <->  A. z ps ) )
43cdeqi 3148 1  |- CondEq ( x  =  y  ->  ( A. z ph  <->  A. z ps ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178   A.wal 1550  CondEqwcdeq 3146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627
This theorem depends on definitions:  df-bi 179  df-cdeq 3147
  Copyright terms: Public domain W3C validator