Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cdeqel Structured version   Unicode version

Theorem cdeqel 3158
 Description: Distribute conditional equality over elementhood. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
cdeqeq.1 CondEq
cdeqeq.2 CondEq
Assertion
Ref Expression
cdeqel CondEq

Proof of Theorem cdeqel
StepHypRef Expression
1 cdeqeq.1 . . . 4 CondEq
21cdeqri 3148 . . 3
3 cdeqeq.2 . . . 4 CondEq
43cdeqri 3148 . . 3
52, 4eleq12d 2505 . 2
65cdeqi 3147 1 CondEq
 Colors of variables: wff set class Syntax hints:   wb 178   wceq 1653   wcel 1726  CondEqwcdeq 3145 This theorem is referenced by:  nfccdeq  3160 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-11 1762  ax-ext 2418 This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1552  df-cleq 2430  df-clel 2433  df-cdeq 3146
 Copyright terms: Public domain W3C validator