MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cdeqi Structured version   Unicode version

Theorem cdeqi 3138
Description: Deduce conditional equality. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
cdeqi.1  |-  ( x  =  y  ->  ph )
Assertion
Ref Expression
cdeqi  |- CondEq ( x  =  y  ->  ph )

Proof of Theorem cdeqi
StepHypRef Expression
1 cdeqi.1 . 2  |-  ( x  =  y  ->  ph )
2 df-cdeq 3137 . 2  |-  (CondEq (
x  =  y  ->  ph )  <->  ( x  =  y  ->  ph ) )
31, 2mpbir 201 1  |- CondEq ( x  =  y  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4  CondEqwcdeq 3136
This theorem is referenced by:  cdeqth  3140  cdeqnot  3141  cdeqal  3142  cdeqab  3143  cdeqim  3146  cdeqcv  3147  cdeqeq  3148  cdeqel  3149
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-cdeq 3137
  Copyright terms: Public domain W3C validator