HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj3lem1 Unicode version

Theorem cdj3lem1 23014
Description: A property of " A and  B are completely disjoint subspaces." Part of Lemma 5 of [Holland] p. 1520. (Contributed by NM, 23-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj1.1  |-  A  e.  SH
cdj1.2  |-  B  e.  SH
Assertion
Ref Expression
cdj3lem1  |-  ( E. x  e.  RR  (
0  <  x  /\  A. y  e.  A  A. z  e.  B  (
( normh `  y )  +  ( normh `  z
) )  <_  (
x  x.  ( normh `  ( y  +h  z
) ) ) )  ->  ( A  i^i  B )  =  0H )
Distinct variable groups:    x, y,
z, A    x, B, y, z

Proof of Theorem cdj3lem1
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 elin 3358 . . . . . . . . . . . 12  |-  ( w  e.  ( A  i^i  B )  <->  ( w  e.  A  /\  w  e.  B ) )
2 cdj1.2 . . . . . . . . . . . . . 14  |-  B  e.  SH
3 neg1cn 9813 . . . . . . . . . . . . . 14  |-  -u 1  e.  CC
4 shmulcl 21797 . . . . . . . . . . . . . 14  |-  ( ( B  e.  SH  /\  -u 1  e.  CC  /\  w  e.  B )  ->  ( -u 1  .h  w )  e.  B
)
52, 3, 4mp3an12 1267 . . . . . . . . . . . . 13  |-  ( w  e.  B  ->  ( -u 1  .h  w )  e.  B )
65anim2i 552 . . . . . . . . . . . 12  |-  ( ( w  e.  A  /\  w  e.  B )  ->  ( w  e.  A  /\  ( -u 1  .h  w )  e.  B
) )
71, 6sylbi 187 . . . . . . . . . . 11  |-  ( w  e.  ( A  i^i  B )  ->  ( w  e.  A  /\  ( -u 1  .h  w )  e.  B ) )
8 fveq2 5525 . . . . . . . . . . . . . 14  |-  ( y  =  w  ->  ( normh `  y )  =  ( normh `  w )
)
98oveq1d 5873 . . . . . . . . . . . . 13  |-  ( y  =  w  ->  (
( normh `  y )  +  ( normh `  z
) )  =  ( ( normh `  w )  +  ( normh `  z
) ) )
10 oveq1 5865 . . . . . . . . . . . . . . 15  |-  ( y  =  w  ->  (
y  +h  z )  =  ( w  +h  z ) )
1110fveq2d 5529 . . . . . . . . . . . . . 14  |-  ( y  =  w  ->  ( normh `  ( y  +h  z ) )  =  ( normh `  ( w  +h  z ) ) )
1211oveq2d 5874 . . . . . . . . . . . . 13  |-  ( y  =  w  ->  (
x  x.  ( normh `  ( y  +h  z
) ) )  =  ( x  x.  ( normh `  ( w  +h  z ) ) ) )
139, 12breq12d 4036 . . . . . . . . . . . 12  |-  ( y  =  w  ->  (
( ( normh `  y
)  +  ( normh `  z ) )  <_ 
( x  x.  ( normh `  ( y  +h  z ) ) )  <-> 
( ( normh `  w
)  +  ( normh `  z ) )  <_ 
( x  x.  ( normh `  ( w  +h  z ) ) ) ) )
14 fveq2 5525 . . . . . . . . . . . . . 14  |-  ( z  =  ( -u 1  .h  w )  ->  ( normh `  z )  =  ( normh `  ( -u 1  .h  w ) ) )
1514oveq2d 5874 . . . . . . . . . . . . 13  |-  ( z  =  ( -u 1  .h  w )  ->  (
( normh `  w )  +  ( normh `  z
) )  =  ( ( normh `  w )  +  ( normh `  ( -u 1  .h  w ) ) ) )
16 oveq2 5866 . . . . . . . . . . . . . . 15  |-  ( z  =  ( -u 1  .h  w )  ->  (
w  +h  z )  =  ( w  +h  ( -u 1  .h  w
) ) )
1716fveq2d 5529 . . . . . . . . . . . . . 14  |-  ( z  =  ( -u 1  .h  w )  ->  ( normh `  ( w  +h  z ) )  =  ( normh `  ( w  +h  ( -u 1  .h  w ) ) ) )
1817oveq2d 5874 . . . . . . . . . . . . 13  |-  ( z  =  ( -u 1  .h  w )  ->  (
x  x.  ( normh `  ( w  +h  z
) ) )  =  ( x  x.  ( normh `  ( w  +h  ( -u 1  .h  w
) ) ) ) )
1915, 18breq12d 4036 . . . . . . . . . . . 12  |-  ( z  =  ( -u 1  .h  w )  ->  (
( ( normh `  w
)  +  ( normh `  z ) )  <_ 
( x  x.  ( normh `  ( w  +h  z ) ) )  <-> 
( ( normh `  w
)  +  ( normh `  ( -u 1  .h  w ) ) )  <_  ( x  x.  ( normh `  ( w  +h  ( -u 1  .h  w ) ) ) ) ) )
2013, 19rspc2v 2890 . . . . . . . . . . 11  |-  ( ( w  e.  A  /\  ( -u 1  .h  w
)  e.  B )  ->  ( A. y  e.  A  A. z  e.  B  ( ( normh `  y )  +  ( normh `  z )
)  <_  ( x  x.  ( normh `  ( y  +h  z ) ) )  ->  ( ( normh `  w )  +  (
normh `  ( -u 1  .h  w ) ) )  <_  ( x  x.  ( normh `  ( w  +h  ( -u 1  .h  w ) ) ) ) ) )
217, 20syl 15 . . . . . . . . . 10  |-  ( w  e.  ( A  i^i  B )  ->  ( A. y  e.  A  A. z  e.  B  (
( normh `  y )  +  ( normh `  z
) )  <_  (
x  x.  ( normh `  ( y  +h  z
) ) )  -> 
( ( normh `  w
)  +  ( normh `  ( -u 1  .h  w ) ) )  <_  ( x  x.  ( normh `  ( w  +h  ( -u 1  .h  w ) ) ) ) ) )
2221adantl 452 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  w  e.  ( A  i^i  B ) )  -> 
( A. y  e.  A  A. z  e.  B  ( ( normh `  y )  +  (
normh `  z ) )  <_  ( x  x.  ( normh `  ( y  +h  z ) ) )  ->  ( ( normh `  w )  +  (
normh `  ( -u 1  .h  w ) ) )  <_  ( x  x.  ( normh `  ( w  +h  ( -u 1  .h  w ) ) ) ) ) )
23 cdj1.1 . . . . . . . . . . . 12  |-  A  e.  SH
2423, 2shincli 21941 . . . . . . . . . . 11  |-  ( A  i^i  B )  e.  SH
2524sheli 21793 . . . . . . . . . 10  |-  ( w  e.  ( A  i^i  B )  ->  w  e.  ~H )
26 normneg 21723 . . . . . . . . . . . . . . 15  |-  ( w  e.  ~H  ->  ( normh `  ( -u 1  .h  w ) )  =  ( normh `  w )
)
2726oveq2d 5874 . . . . . . . . . . . . . 14  |-  ( w  e.  ~H  ->  (
( normh `  w )  +  ( normh `  ( -u 1  .h  w ) ) )  =  ( ( normh `  w )  +  ( normh `  w
) ) )
28 normcl 21704 . . . . . . . . . . . . . . . 16  |-  ( w  e.  ~H  ->  ( normh `  w )  e.  RR )
2928recnd 8861 . . . . . . . . . . . . . . 15  |-  ( w  e.  ~H  ->  ( normh `  w )  e.  CC )
30292timesd 9954 . . . . . . . . . . . . . 14  |-  ( w  e.  ~H  ->  (
2  x.  ( normh `  w ) )  =  ( ( normh `  w
)  +  ( normh `  w ) ) )
3127, 30eqtr4d 2318 . . . . . . . . . . . . 13  |-  ( w  e.  ~H  ->  (
( normh `  w )  +  ( normh `  ( -u 1  .h  w ) ) )  =  ( 2  x.  ( normh `  w ) ) )
3231adantl 452 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  w  e.  ~H )  ->  ( ( normh `  w
)  +  ( normh `  ( -u 1  .h  w ) ) )  =  ( 2  x.  ( normh `  w )
) )
33 hvnegid 21606 . . . . . . . . . . . . . . . . 17  |-  ( w  e.  ~H  ->  (
w  +h  ( -u
1  .h  w ) )  =  0h )
3433fveq2d 5529 . . . . . . . . . . . . . . . 16  |-  ( w  e.  ~H  ->  ( normh `  ( w  +h  ( -u 1  .h  w
) ) )  =  ( normh `  0h )
)
35 norm0 21707 . . . . . . . . . . . . . . . 16  |-  ( normh `  0h )  =  0
3634, 35syl6eq 2331 . . . . . . . . . . . . . . 15  |-  ( w  e.  ~H  ->  ( normh `  ( w  +h  ( -u 1  .h  w
) ) )  =  0 )
3736oveq2d 5874 . . . . . . . . . . . . . 14  |-  ( w  e.  ~H  ->  (
x  x.  ( normh `  ( w  +h  ( -u 1  .h  w ) ) ) )  =  ( x  x.  0 ) )
38 recn 8827 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR  ->  x  e.  CC )
3938mul01d 9011 . . . . . . . . . . . . . 14  |-  ( x  e.  RR  ->  (
x  x.  0 )  =  0 )
4037, 39sylan9eqr 2337 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  w  e.  ~H )  ->  ( x  x.  ( normh `  ( w  +h  ( -u 1  .h  w
) ) ) )  =  0 )
41 2cn 9816 . . . . . . . . . . . . . 14  |-  2  e.  CC
4241mul01i 9002 . . . . . . . . . . . . 13  |-  ( 2  x.  0 )  =  0
4340, 42syl6eqr 2333 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  w  e.  ~H )  ->  ( x  x.  ( normh `  ( w  +h  ( -u 1  .h  w
) ) ) )  =  ( 2  x.  0 ) )
4432, 43breq12d 4036 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  w  e.  ~H )  ->  ( ( ( normh `  w )  +  (
normh `  ( -u 1  .h  w ) ) )  <_  ( x  x.  ( normh `  ( w  +h  ( -u 1  .h  w ) ) ) )  <->  ( 2  x.  ( normh `  w )
)  <_  ( 2  x.  0 ) ) )
45 0re 8838 . . . . . . . . . . . . . . 15  |-  0  e.  RR
46 letri3 8907 . . . . . . . . . . . . . . 15  |-  ( ( ( normh `  w )  e.  RR  /\  0  e.  RR )  ->  (
( normh `  w )  =  0  <->  ( ( normh `  w )  <_ 
0  /\  0  <_  (
normh `  w ) ) ) )
4728, 45, 46sylancl 643 . . . . . . . . . . . . . 14  |-  ( w  e.  ~H  ->  (
( normh `  w )  =  0  <->  ( ( normh `  w )  <_ 
0  /\  0  <_  (
normh `  w ) ) ) )
48 normge0 21705 . . . . . . . . . . . . . . 15  |-  ( w  e.  ~H  ->  0  <_  ( normh `  w )
)
4948biantrud 493 . . . . . . . . . . . . . 14  |-  ( w  e.  ~H  ->  (
( normh `  w )  <_  0  <->  ( ( normh `  w )  <_  0  /\  0  <_  ( normh `  w ) ) ) )
50 2re 9815 . . . . . . . . . . . . . . . . 17  |-  2  e.  RR
51 2pos 9828 . . . . . . . . . . . . . . . . 17  |-  0  <  2
5250, 51pm3.2i 441 . . . . . . . . . . . . . . . 16  |-  ( 2  e.  RR  /\  0  <  2 )
53 lemul2 9609 . . . . . . . . . . . . . . . 16  |-  ( ( ( normh `  w )  e.  RR  /\  0  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
( ( normh `  w
)  <_  0  <->  ( 2  x.  ( normh `  w
) )  <_  (
2  x.  0 ) ) )
5445, 52, 53mp3an23 1269 . . . . . . . . . . . . . . 15  |-  ( (
normh `  w )  e.  RR  ->  ( ( normh `  w )  <_ 
0  <->  ( 2  x.  ( normh `  w )
)  <_  ( 2  x.  0 ) ) )
5528, 54syl 15 . . . . . . . . . . . . . 14  |-  ( w  e.  ~H  ->  (
( normh `  w )  <_  0  <->  ( 2  x.  ( normh `  w )
)  <_  ( 2  x.  0 ) ) )
5647, 49, 553bitr2rd 273 . . . . . . . . . . . . 13  |-  ( w  e.  ~H  ->  (
( 2  x.  ( normh `  w ) )  <_  ( 2  x.  0 )  <->  ( normh `  w )  =  0 ) )
57 norm-i 21708 . . . . . . . . . . . . 13  |-  ( w  e.  ~H  ->  (
( normh `  w )  =  0  <->  w  =  0h ) )
5856, 57bitrd 244 . . . . . . . . . . . 12  |-  ( w  e.  ~H  ->  (
( 2  x.  ( normh `  w ) )  <_  ( 2  x.  0 )  <->  w  =  0h ) )
5958adantl 452 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  w  e.  ~H )  ->  ( ( 2  x.  ( normh `  w )
)  <_  ( 2  x.  0 )  <->  w  =  0h ) )
6044, 59bitrd 244 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  w  e.  ~H )  ->  ( ( ( normh `  w )  +  (
normh `  ( -u 1  .h  w ) ) )  <_  ( x  x.  ( normh `  ( w  +h  ( -u 1  .h  w ) ) ) )  <->  w  =  0h ) )
6125, 60sylan2 460 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  w  e.  ( A  i^i  B ) )  -> 
( ( ( normh `  w )  +  (
normh `  ( -u 1  .h  w ) ) )  <_  ( x  x.  ( normh `  ( w  +h  ( -u 1  .h  w ) ) ) )  <->  w  =  0h ) )
6222, 61sylibd 205 . . . . . . . 8  |-  ( ( x  e.  RR  /\  w  e.  ( A  i^i  B ) )  -> 
( A. y  e.  A  A. z  e.  B  ( ( normh `  y )  +  (
normh `  z ) )  <_  ( x  x.  ( normh `  ( y  +h  z ) ) )  ->  w  =  0h ) )
6362impancom 427 . . . . . . 7  |-  ( ( x  e.  RR  /\  A. y  e.  A  A. z  e.  B  (
( normh `  y )  +  ( normh `  z
) )  <_  (
x  x.  ( normh `  ( y  +h  z
) ) ) )  ->  ( w  e.  ( A  i^i  B
)  ->  w  =  0h ) )
64 elch0 21833 . . . . . . 7  |-  ( w  e.  0H  <->  w  =  0h )
6563, 64syl6ibr 218 . . . . . 6  |-  ( ( x  e.  RR  /\  A. y  e.  A  A. z  e.  B  (
( normh `  y )  +  ( normh `  z
) )  <_  (
x  x.  ( normh `  ( y  +h  z
) ) ) )  ->  ( w  e.  ( A  i^i  B
)  ->  w  e.  0H ) )
6665ssrdv 3185 . . . . 5  |-  ( ( x  e.  RR  /\  A. y  e.  A  A. z  e.  B  (
( normh `  y )  +  ( normh `  z
) )  <_  (
x  x.  ( normh `  ( y  +h  z
) ) ) )  ->  ( A  i^i  B )  C_  0H )
6766ex 423 . . . 4  |-  ( x  e.  RR  ->  ( A. y  e.  A  A. z  e.  B  ( ( normh `  y
)  +  ( normh `  z ) )  <_ 
( x  x.  ( normh `  ( y  +h  z ) ) )  ->  ( A  i^i  B )  C_  0H )
)
68 shle0 22021 . . . . 5  |-  ( ( A  i^i  B )  e.  SH  ->  (
( A  i^i  B
)  C_  0H  <->  ( A  i^i  B )  =  0H ) )
6924, 68ax-mp 8 . . . 4  |-  ( ( A  i^i  B ) 
C_  0H  <->  ( A  i^i  B )  =  0H )
7067, 69syl6ib 217 . . 3  |-  ( x  e.  RR  ->  ( A. y  e.  A  A. z  e.  B  ( ( normh `  y
)  +  ( normh `  z ) )  <_ 
( x  x.  ( normh `  ( y  +h  z ) ) )  ->  ( A  i^i  B )  =  0H ) )
7170adantld 453 . 2  |-  ( x  e.  RR  ->  (
( 0  <  x  /\  A. y  e.  A  A. z  e.  B  ( ( normh `  y
)  +  ( normh `  z ) )  <_ 
( x  x.  ( normh `  ( y  +h  z ) ) ) )  ->  ( A  i^i  B )  =  0H ) )
7271rexlimiv 2661 1  |-  ( E. x  e.  RR  (
0  <  x  /\  A. y  e.  A  A. z  e.  B  (
( normh `  y )  +  ( normh `  z
) )  <_  (
x  x.  ( normh `  ( y  +h  z
) ) ) )  ->  ( A  i^i  B )  =  0H )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544    i^i cin 3151    C_ wss 3152   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    < clt 8867    <_ cle 8868   -ucneg 9038   2c2 9795   ~Hchil 21499    +h cva 21500    .h csm 21501   normhcno 21503   0hc0v 21504   SHcsh 21508   0Hc0h 21515
This theorem is referenced by:  cdj3lem2b  23017  cdj3i  23021
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-hilex 21579  ax-hfvadd 21580  ax-hvcom 21581  ax-hv0cl 21583  ax-hvaddid 21584  ax-hfvmul 21585  ax-hvmulid 21586  ax-hvmulass 21587  ax-hvdistr1 21588  ax-hvdistr2 21589  ax-hvmul0 21590  ax-hfi 21658  ax-his1 21661  ax-his3 21663  ax-his4 21664
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-hnorm 21548  df-hvsub 21551  df-sh 21786  df-ch0 21832
  Copyright terms: Public domain W3C validator