Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemb Unicode version

Theorem cdlemb 29801
Description: Given two atoms not less than or equal to an element covered by 1, there is a third. Lemma B in [Crawley] p. 112. (Contributed by NM, 8-May-2012.)
Hypotheses
Ref Expression
cdlemb.b  |-  B  =  ( Base `  K
)
cdlemb.l  |-  .<_  =  ( le `  K )
cdlemb.j  |-  .\/  =  ( join `  K )
cdlemb.u  |-  .1.  =  ( 1. `  K )
cdlemb.c  |-  C  =  (  <o  `  K )
cdlemb.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
cdlemb  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  E. r  e.  A  ( -.  r  .<_  X  /\  -.  r  .<_  ( P  .\/  Q ) ) )
Distinct variable groups:    A, r    B, r    C, r    .\/ , r    K, r    .<_ , r    P, r    Q, r    .1. , r    X, r

Proof of Theorem cdlemb
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 simp11 985 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  K  e.  HL )
2 simp12 986 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  P  e.  A )
3 simp13 987 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  Q  e.  A )
4 simp2l 981 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  X  e.  B )
5 simp2r 982 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  P  =/=  Q )
6 simp31 991 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  X C  .1.  )
7 simp32 992 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  -.  P  .<_  X )
8 cdlemb.b . . . . 5  |-  B  =  ( Base `  K
)
9 cdlemb.l . . . . 5  |-  .<_  =  ( le `  K )
10 cdlemb.j . . . . 5  |-  .\/  =  ( join `  K )
11 eqid 2316 . . . . 5  |-  ( meet `  K )  =  (
meet `  K )
12 cdlemb.u . . . . 5  |-  .1.  =  ( 1. `  K )
13 cdlemb.c . . . . 5  |-  C  =  (  <o  `  K )
14 cdlemb.a . . . . 5  |-  A  =  ( Atoms `  K )
158, 9, 10, 11, 12, 13, 141cvrat 29483 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  -> 
( ( P  .\/  Q ) ( meet `  K
) X )  e.  A )
161, 2, 3, 4, 5, 6, 7, 15syl133anc 1205 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  -> 
( ( P  .\/  Q ) ( meet `  K
) X )  e.  A )
17 hllat 29371 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
181, 17syl 15 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  K  e.  Lat )
198, 14atbase 29297 . . . . . . 7  |-  ( P  e.  A  ->  P  e.  B )
202, 19syl 15 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  P  e.  B )
218, 14atbase 29297 . . . . . . 7  |-  ( Q  e.  A  ->  Q  e.  B )
223, 21syl 15 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  Q  e.  B )
238, 10latjcl 14205 . . . . . 6  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  Q  e.  B )  ->  ( P  .\/  Q
)  e.  B )
2418, 20, 22, 23syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  -> 
( P  .\/  Q
)  e.  B )
258, 9, 11latmle2 14232 . . . . 5  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  B  /\  X  e.  B )  ->  (
( P  .\/  Q
) ( meet `  K
) X )  .<_  X )
2618, 24, 4, 25syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  -> 
( ( P  .\/  Q ) ( meet `  K
) X )  .<_  X )
27 eqid 2316 . . . . 5  |-  ( lt
`  K )  =  ( lt `  K
)
288, 9, 27, 12, 13, 141cvratlt 29481 . . . 4  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  Q ) ( meet `  K
) X )  e.  A  /\  X  e.  B )  /\  ( X C  .1.  /\  (
( P  .\/  Q
) ( meet `  K
) X )  .<_  X ) )  -> 
( ( P  .\/  Q ) ( meet `  K
) X ) ( lt `  K ) X )
291, 16, 4, 6, 26, 28syl32anc 1190 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  -> 
( ( P  .\/  Q ) ( meet `  K
) X ) ( lt `  K ) X )
308, 27, 142atlt 29446 . . 3  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  Q ) ( meet `  K
) X )  e.  A  /\  X  e.  B )  /\  (
( P  .\/  Q
) ( meet `  K
) X ) ( lt `  K ) X )  ->  E. u  e.  A  ( u  =/=  ( ( P  .\/  Q ) ( meet `  K
) X )  /\  u ( lt `  K ) X ) )
311, 16, 4, 29, 30syl31anc 1185 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  E. u  e.  A  ( u  =/=  (
( P  .\/  Q
) ( meet `  K
) X )  /\  u ( lt `  K ) X ) )
32 simpl11 1030 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  ( ( P  .\/  Q ) ( meet `  K
) X )  /\  u ( lt `  K ) X ) ) )  ->  K  e.  HL )
33 simpl12 1031 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  ( ( P  .\/  Q ) ( meet `  K
) X )  /\  u ( lt `  K ) X ) ) )  ->  P  e.  A )
34 simprl 732 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  ( ( P  .\/  Q ) ( meet `  K
) X )  /\  u ( lt `  K ) X ) ) )  ->  u  e.  A )
35 simpl32 1037 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  ( ( P  .\/  Q ) ( meet `  K
) X )  /\  u ( lt `  K ) X ) ) )  ->  -.  P  .<_  X )
36 simprrr 741 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  ( ( P  .\/  Q ) ( meet `  K
) X )  /\  u ( lt `  K ) X ) ) )  ->  u
( lt `  K
) X )
37 simpl2l 1008 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  ( ( P  .\/  Q ) ( meet `  K
) X )  /\  u ( lt `  K ) X ) ) )  ->  X  e.  B )
389, 27pltle 14144 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  u  e.  A  /\  X  e.  B )  ->  ( u ( lt
`  K ) X  ->  u  .<_  X ) )
3932, 34, 37, 38syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  ( ( P  .\/  Q ) ( meet `  K
) X )  /\  u ( lt `  K ) X ) ) )  ->  (
u ( lt `  K ) X  ->  u  .<_  X ) )
4036, 39mpd 14 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  ( ( P  .\/  Q ) ( meet `  K
) X )  /\  u ( lt `  K ) X ) ) )  ->  u  .<_  X )
41 breq1 4063 . . . . . . . . 9  |-  ( P  =  u  ->  ( P  .<_  X  <->  u  .<_  X ) )
4240, 41syl5ibrcom 213 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  ( ( P  .\/  Q ) ( meet `  K
) X )  /\  u ( lt `  K ) X ) ) )  ->  ( P  =  u  ->  P 
.<_  X ) )
4342necon3bd 2516 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  ( ( P  .\/  Q ) ( meet `  K
) X )  /\  u ( lt `  K ) X ) ) )  ->  ( -.  P  .<_  X  ->  P  =/=  u ) )
4435, 43mpd 14 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  ( ( P  .\/  Q ) ( meet `  K
) X )  /\  u ( lt `  K ) X ) ) )  ->  P  =/=  u )
459, 10, 14hlsupr 29393 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  u  e.  A )  /\  P  =/=  u
)  ->  E. r  e.  A  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) )
4632, 33, 34, 44, 45syl31anc 1185 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  ( ( P  .\/  Q ) ( meet `  K
) X )  /\  u ( lt `  K ) X ) ) )  ->  E. r  e.  A  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) )
47 eqid 2316 . . . . . . . . . 10  |-  ( ( P  .\/  Q ) ( meet `  K
) X )  =  ( ( P  .\/  Q ) ( meet `  K
) X )
488, 9, 10, 12, 13, 14, 27, 11, 47cdlemblem 29800 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  ( ( P  .\/  Q ) ( meet `  K
) X )  /\  u ( lt `  K ) X ) )  /\  ( r  e.  A  /\  (
r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u
) ) ) )  ->  ( -.  r  .<_  X  /\  -.  r  .<_  ( P  .\/  Q
) ) )
49483exp 1150 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  -> 
( ( u  e.  A  /\  ( u  =/=  ( ( P 
.\/  Q ) (
meet `  K ) X )  /\  u
( lt `  K
) X ) )  ->  ( ( r  e.  A  /\  (
r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u
) ) )  -> 
( -.  r  .<_  X  /\  -.  r  .<_  ( P  .\/  Q ) ) ) ) )
5049exp4a 589 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  -> 
( ( u  e.  A  /\  ( u  =/=  ( ( P 
.\/  Q ) (
meet `  K ) X )  /\  u
( lt `  K
) X ) )  ->  ( r  e.  A  ->  ( (
r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u
) )  ->  ( -.  r  .<_  X  /\  -.  r  .<_  ( P 
.\/  Q ) ) ) ) ) )
5150imp 418 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  ( ( P  .\/  Q ) ( meet `  K
) X )  /\  u ( lt `  K ) X ) ) )  ->  (
r  e.  A  -> 
( ( r  =/= 
P  /\  r  =/=  u  /\  r  .<_  ( P 
.\/  u ) )  ->  ( -.  r  .<_  X  /\  -.  r  .<_  ( P  .\/  Q
) ) ) ) )
5251reximdvai 2687 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  ( ( P  .\/  Q ) ( meet `  K
) X )  /\  u ( lt `  K ) X ) ) )  ->  ( E. r  e.  A  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P 
.\/  u ) )  ->  E. r  e.  A  ( -.  r  .<_  X  /\  -.  r  .<_  ( P  .\/  Q ) ) ) )
5346, 52mpd 14 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  ( ( P  .\/  Q ) ( meet `  K
) X )  /\  u ( lt `  K ) X ) ) )  ->  E. r  e.  A  ( -.  r  .<_  X  /\  -.  r  .<_  ( P  .\/  Q ) ) )
5453exp32 588 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  -> 
( u  e.  A  ->  ( ( u  =/=  ( ( P  .\/  Q ) ( meet `  K
) X )  /\  u ( lt `  K ) X )  ->  E. r  e.  A  ( -.  r  .<_  X  /\  -.  r  .<_  ( P  .\/  Q ) ) ) ) )
5554rexlimdv 2700 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  -> 
( E. u  e.  A  ( u  =/=  ( ( P  .\/  Q ) ( meet `  K
) X )  /\  u ( lt `  K ) X )  ->  E. r  e.  A  ( -.  r  .<_  X  /\  -.  r  .<_  ( P  .\/  Q ) ) ) )
5631, 55mpd 14 1  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  E. r  e.  A  ( -.  r  .<_  X  /\  -.  r  .<_  ( P  .\/  Q ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1633    e. wcel 1701    =/= wne 2479   E.wrex 2578   class class class wbr 4060   ` cfv 5292  (class class class)co 5900   Basecbs 13195   lecple 13262   ltcplt 14124   joincjn 14127   meetcmee 14128   1.cp1 14193   Latclat 14200    <o ccvr 29270   Atomscatm 29271   HLchlt 29358
This theorem is referenced by:  cdlemb2  30048
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-rep 4168  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-op 3683  df-uni 3865  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-id 4346  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-1st 6164  df-2nd 6165  df-undef 6340  df-riota 6346  df-poset 14129  df-plt 14141  df-lub 14157  df-glb 14158  df-join 14159  df-meet 14160  df-p0 14194  df-p1 14195  df-lat 14201  df-clat 14263  df-oposet 29184  df-ol 29186  df-oml 29187  df-covers 29274  df-ats 29275  df-atl 29306  df-cvlat 29330  df-hlat 29359
  Copyright terms: Public domain W3C validator