Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemb2 Structured version   Unicode version

Theorem cdlemb2 30739
Description: Given two atoms not under the fiducial (reference) co-atom  W, there is a third. Lemma B in [Crawley] p. 112. (Contributed by NM, 30-May-2012.)
Hypotheses
Ref Expression
cdlemb2.l  |-  .<_  =  ( le `  K )
cdlemb2.j  |-  .\/  =  ( join `  K )
cdlemb2.a  |-  A  =  ( Atoms `  K )
cdlemb2.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
cdlemb2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/= 
Q )  ->  E. r  e.  A  ( -.  r  .<_  W  /\  -.  r  .<_  ( P  .\/  Q ) ) )
Distinct variable groups:    A, r    .\/ , r    K, r    .<_ , r    P, r    Q, r    W, r
Allowed substitution hint:    H( r)

Proof of Theorem cdlemb2
StepHypRef Expression
1 simp1l 981 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/= 
Q )  ->  K  e.  HL )
2 simp2ll 1024 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/= 
Q )  ->  P  e.  A )
3 simp2rl 1026 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/= 
Q )  ->  Q  e.  A )
4 simp1r 982 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/= 
Q )  ->  W  e.  H )
5 eqid 2435 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
6 cdlemb2.h . . . 4  |-  H  =  ( LHyp `  K
)
75, 6lhpbase 30696 . . 3  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
84, 7syl 16 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/= 
Q )  ->  W  e.  ( Base `  K
) )
9 simp3 959 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/= 
Q )  ->  P  =/=  Q )
10 eqid 2435 . . . 4  |-  ( 1.
`  K )  =  ( 1. `  K
)
11 eqid 2435 . . . 4  |-  (  <o  `  K )  =  ( 
<o  `  K )
1210, 11, 6lhp1cvr 30697 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  W (  <o  `  K
) ( 1. `  K ) )
13123ad2ant1 978 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/= 
Q )  ->  W
(  <o  `  K )
( 1. `  K
) )
14 simp2lr 1025 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/= 
Q )  ->  -.  P  .<_  W )
15 simp2rr 1027 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/= 
Q )  ->  -.  Q  .<_  W )
16 cdlemb2.l . . 3  |-  .<_  =  ( le `  K )
17 cdlemb2.j . . 3  |-  .\/  =  ( join `  K )
18 cdlemb2.a . . 3  |-  A  =  ( Atoms `  K )
195, 16, 17, 10, 11, 18cdlemb 30492 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( W  e.  (
Base `  K )  /\  P  =/=  Q
)  /\  ( W
(  <o  `  K )
( 1. `  K
)  /\  -.  P  .<_  W  /\  -.  Q  .<_  W ) )  ->  E. r  e.  A  ( -.  r  .<_  W  /\  -.  r  .<_  ( P  .\/  Q ) ) )
201, 2, 3, 8, 9, 13, 14, 15, 19syl323anc 1214 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/= 
Q )  ->  E. r  e.  A  ( -.  r  .<_  W  /\  -.  r  .<_  ( P  .\/  Q ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   E.wrex 2698   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   Basecbs 13459   lecple 13526   joincjn 14391   1.cp1 14457    <o ccvr 29961   Atomscatm 29962   HLchlt 30049   LHypclh 30682
This theorem is referenced by:  cdlemd4  30899  cdlemd9  30904  cdleme25a  31051  cdleme25c  31053  cdleme25dN  31054  cdleme26ee  31058  cdlemefs32sn1aw  31112  cdleme43fsv1snlem  31118  cdleme41sn3a  31131  cdleme40m  31165  cdleme40n  31166  cdleme17d3  31194  cdlemeg46gfre  31230  cdleme50trn2  31249  cdlemb3  31304
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-poset 14393  df-plt 14405  df-lub 14421  df-glb 14422  df-join 14423  df-meet 14424  df-p0 14458  df-p1 14459  df-lat 14465  df-clat 14527  df-oposet 29875  df-ol 29877  df-oml 29878  df-covers 29965  df-ats 29966  df-atl 29997  df-cvlat 30021  df-hlat 30050  df-lhyp 30686
  Copyright terms: Public domain W3C validator