Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemd6 Structured version   Unicode version

Theorem cdlemd6 31074
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 31-May-2012.)
Hypotheses
Ref Expression
cdlemd4.l  |-  .<_  =  ( le `  K )
cdlemd4.j  |-  .\/  =  ( join `  K )
cdlemd4.a  |-  A  =  ( Atoms `  K )
cdlemd4.h  |-  H  =  ( LHyp `  K
)
cdlemd4.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
cdlemd6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  /\  ( F `  P )  =  ( G `  P ) )  -> 
( F `  Q
)  =  ( G `
 Q ) )

Proof of Theorem cdlemd6
StepHypRef Expression
1 simp3 960 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  /\  ( F `  P )  =  ( G `  P ) )  -> 
( F `  P
)  =  ( G `
 P ) )
21oveq2d 6100 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  /\  ( F `  P )  =  ( G `  P ) )  -> 
( P  .\/  ( F `  P )
)  =  ( P 
.\/  ( G `  P ) ) )
32oveq1d 6099 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  /\  ( F `  P )  =  ( G `  P ) )  -> 
( ( P  .\/  ( F `  P ) ) ( meet `  K
) W )  =  ( ( P  .\/  ( G `  P ) ) ( meet `  K
) W ) )
4 simp1l 982 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  /\  ( F `  P )  =  ( G `  P ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
5 simp1rl 1023 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  /\  ( F `  P )  =  ( G `  P ) )  ->  F  e.  T )
6 simp21 991 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  /\  ( F `  P )  =  ( G `  P ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
7 cdlemd4.l . . . . . . 7  |-  .<_  =  ( le `  K )
8 cdlemd4.j . . . . . . 7  |-  .\/  =  ( join `  K )
9 eqid 2438 . . . . . . 7  |-  ( meet `  K )  =  (
meet `  K )
10 cdlemd4.a . . . . . . 7  |-  A  =  ( Atoms `  K )
11 cdlemd4.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
12 cdlemd4.t . . . . . . 7  |-  T  =  ( ( LTrn `  K
) `  W )
13 eqid 2438 . . . . . . 7  |-  ( ( trL `  K ) `
 W )  =  ( ( trL `  K
) `  W )
147, 8, 9, 10, 11, 12, 13trlval2 31034 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( trL `  K
) `  W ) `  F )  =  ( ( P  .\/  ( F `  P )
) ( meet `  K
) W ) )
154, 5, 6, 14syl3anc 1185 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  /\  ( F `  P )  =  ( G `  P ) )  -> 
( ( ( trL `  K ) `  W
) `  F )  =  ( ( P 
.\/  ( F `  P ) ) (
meet `  K ) W ) )
16 simp1rr 1024 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  /\  ( F `  P )  =  ( G `  P ) )  ->  G  e.  T )
177, 8, 9, 10, 11, 12, 13trlval2 31034 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( trL `  K
) `  W ) `  G )  =  ( ( P  .\/  ( G `  P )
) ( meet `  K
) W ) )
184, 16, 6, 17syl3anc 1185 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  /\  ( F `  P )  =  ( G `  P ) )  -> 
( ( ( trL `  K ) `  W
) `  G )  =  ( ( P 
.\/  ( G `  P ) ) (
meet `  K ) W ) )
193, 15, 183eqtr4d 2480 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  /\  ( F `  P )  =  ( G `  P ) )  -> 
( ( ( trL `  K ) `  W
) `  F )  =  ( ( ( trL `  K ) `
 W ) `  G ) )
2019oveq2d 6100 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  /\  ( F `  P )  =  ( G `  P ) )  -> 
( Q  .\/  (
( ( trL `  K
) `  W ) `  F ) )  =  ( Q  .\/  (
( ( trL `  K
) `  W ) `  G ) ) )
211oveq1d 6099 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  /\  ( F `  P )  =  ( G `  P ) )  -> 
( ( F `  P )  .\/  (
( P  .\/  Q
) ( meet `  K
) W ) )  =  ( ( G `
 P )  .\/  ( ( P  .\/  Q ) ( meet `  K
) W ) ) )
2220, 21oveq12d 6102 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  /\  ( F `  P )  =  ( G `  P ) )  -> 
( ( Q  .\/  ( ( ( trL `  K ) `  W
) `  F )
) ( meet `  K
) ( ( F `
 P )  .\/  ( ( P  .\/  Q ) ( meet `  K
) W ) ) )  =  ( ( Q  .\/  ( ( ( trL `  K
) `  W ) `  G ) ) (
meet `  K )
( ( G `  P )  .\/  (
( P  .\/  Q
) ( meet `  K
) W ) ) ) )
23 simp22 992 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  /\  ( F `  P )  =  ( G `  P ) )  -> 
( Q  e.  A  /\  -.  Q  .<_  W ) )
24 simp23 993 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  /\  ( F `  P )  =  ( G `  P ) )  ->  -.  Q  .<_  ( P 
.\/  ( F `  P ) ) )
257, 8, 9, 10, 11, 12, 13cdlemc 31068 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  -.  Q  .<_  ( P  .\/  ( F `  P )
) )  ->  ( F `  Q )  =  ( ( Q 
.\/  ( ( ( trL `  K ) `
 W ) `  F ) ) (
meet `  K )
( ( F `  P )  .\/  (
( P  .\/  Q
) ( meet `  K
) W ) ) ) )
264, 5, 6, 23, 24, 25syl131anc 1198 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  /\  ( F `  P )  =  ( G `  P ) )  -> 
( F `  Q
)  =  ( ( Q  .\/  ( ( ( trL `  K
) `  W ) `  F ) ) (
meet `  K )
( ( F `  P )  .\/  (
( P  .\/  Q
) ( meet `  K
) W ) ) ) )
27 oveq2 6092 . . . . . . 7  |-  ( ( F `  P )  =  ( G `  P )  ->  ( P  .\/  ( F `  P ) )  =  ( P  .\/  ( G `  P )
) )
2827breq2d 4227 . . . . . 6  |-  ( ( F `  P )  =  ( G `  P )  ->  ( Q  .<_  ( P  .\/  ( F `  P ) )  <->  Q  .<_  ( P 
.\/  ( G `  P ) ) ) )
2928notbid 287 . . . . 5  |-  ( ( F `  P )  =  ( G `  P )  ->  ( -.  Q  .<_  ( P 
.\/  ( F `  P ) )  <->  -.  Q  .<_  ( P  .\/  ( G `  P )
) ) )
3029biimpd 200 . . . 4  |-  ( ( F `  P )  =  ( G `  P )  ->  ( -.  Q  .<_  ( P 
.\/  ( F `  P ) )  ->  -.  Q  .<_  ( P 
.\/  ( G `  P ) ) ) )
311, 24, 30sylc 59 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  /\  ( F `  P )  =  ( G `  P ) )  ->  -.  Q  .<_  ( P 
.\/  ( G `  P ) ) )
327, 8, 9, 10, 11, 12, 13cdlemc 31068 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  -.  Q  .<_  ( P  .\/  ( G `  P )
) )  ->  ( G `  Q )  =  ( ( Q 
.\/  ( ( ( trL `  K ) `
 W ) `  G ) ) (
meet `  K )
( ( G `  P )  .\/  (
( P  .\/  Q
) ( meet `  K
) W ) ) ) )
334, 16, 6, 23, 31, 32syl131anc 1198 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  /\  ( F `  P )  =  ( G `  P ) )  -> 
( G `  Q
)  =  ( ( Q  .\/  ( ( ( trL `  K
) `  W ) `  G ) ) (
meet `  K )
( ( G `  P )  .\/  (
( P  .\/  Q
) ( meet `  K
) W ) ) ) )
3422, 26, 333eqtr4d 2480 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  /\  ( F `  P )  =  ( G `  P ) )  -> 
( F `  Q
)  =  ( G `
 Q ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   class class class wbr 4215   ` cfv 5457  (class class class)co 6084   lecple 13541   joincjn 14406   meetcmee 14407   Atomscatm 30135   HLchlt 30222   LHypclh 30855   LTrncltrn 30972   trLctrl 31029
This theorem is referenced by:  cdlemd7  31075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-iin 4098  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-undef 6546  df-riota 6552  df-map 7023  df-poset 14408  df-plt 14420  df-lub 14436  df-glb 14437  df-join 14438  df-meet 14439  df-p0 14473  df-p1 14474  df-lat 14480  df-clat 14542  df-oposet 30048  df-ol 30050  df-oml 30051  df-covers 30138  df-ats 30139  df-atl 30170  df-cvlat 30194  df-hlat 30223  df-llines 30369  df-psubsp 30374  df-pmap 30375  df-padd 30667  df-lhyp 30859  df-laut 30860  df-ldil 30975  df-ltrn 30976  df-trl 31030
  Copyright terms: Public domain W3C validator