Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemd9 Unicode version

Theorem cdlemd9 30395
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 2-Jun-2012.)
Hypotheses
Ref Expression
cdlemd4.l  |-  .<_  =  ( le `  K )
cdlemd4.j  |-  .\/  =  ( join `  K )
cdlemd4.a  |-  A  =  ( Atoms `  K )
cdlemd4.h  |-  H  =  ( LHyp `  K
)
cdlemd4.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
cdlemd9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  -> 
( F `  R
)  =  ( G `
 R ) )

Proof of Theorem cdlemd9
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 simpl1 958 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =  P )  -> 
( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
) )
2 simpl2 959 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =  P )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
3 simpl3 960 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =  P )  -> 
( F `  P
)  =  ( G `
 P ) )
4 simpr 447 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =  P )  -> 
( F `  P
)  =  P )
5 cdlemd4.l . . . 4  |-  .<_  =  ( le `  K )
6 cdlemd4.j . . . 4  |-  .\/  =  ( join `  K )
7 cdlemd4.a . . . 4  |-  A  =  ( Atoms `  K )
8 cdlemd4.h . . . 4  |-  H  =  ( LHyp `  K
)
9 cdlemd4.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
105, 6, 7, 8, 9cdlemd8 30394 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  P )  =  P ) )  ->  ( F `  R )  =  ( G `  R ) )
111, 2, 3, 4, 10syl112anc 1186 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =  P )  -> 
( F `  R
)  =  ( G `
 R ) )
12 simpl11 1030 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =/=  P )  -> 
( K  e.  HL  /\  W  e.  H ) )
13 simpl2 959 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =/=  P )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
14 simp12l 1068 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  ->  F  e.  T )
1514adantr 451 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =/=  P )  ->  F  e.  T )
165, 7, 8, 9ltrnel 30328 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
1712, 15, 13, 16syl3anc 1182 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =/=  P )  -> 
( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
18 simpr 447 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =/=  P )  -> 
( F `  P
)  =/=  P )
1918necomd 2529 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =/=  P )  ->  P  =/=  ( F `  P ) )
205, 6, 7, 8cdlemb2 30230 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )  /\  P  =/=  ( F `  P
) )  ->  E. s  e.  A  ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  ( F `  P ) ) ) )
2112, 13, 17, 19, 20syl121anc 1187 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =/=  P )  ->  E. s  e.  A  ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  ( F `
 P ) ) ) )
22 simp1l1 1048 . . . . 5  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T
)  /\  R  e.  A )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `
 P )  =/= 
P )  /\  s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  ( F `  P ) ) ) )  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
) )
23 simp1l2 1049 . . . . 5  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T
)  /\  R  e.  A )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `
 P )  =/= 
P )  /\  s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  ( F `  P ) ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
24 simp2 956 . . . . . 6  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T
)  /\  R  e.  A )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `
 P )  =/= 
P )  /\  s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  ( F `  P ) ) ) )  ->  s  e.  A )
25 simp3l 983 . . . . . 6  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T
)  /\  R  e.  A )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `
 P )  =/= 
P )  /\  s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  ( F `  P ) ) ) )  ->  -.  s  .<_  W )
2624, 25jca 518 . . . . 5  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T
)  /\  R  e.  A )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `
 P )  =/= 
P )  /\  s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  ( F `  P ) ) ) )  ->  ( s  e.  A  /\  -.  s  .<_  W ) )
27 simp1l3 1050 . . . . 5  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T
)  /\  R  e.  A )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `
 P )  =/= 
P )  /\  s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  ( F `  P ) ) ) )  ->  ( F `  P )  =  ( G `  P ) )
28 simp3r 984 . . . . 5  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T
)  /\  R  e.  A )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `
 P )  =/= 
P )  /\  s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  ( F `  P ) ) ) )  ->  -.  s  .<_  ( P  .\/  ( F `  P )
) )
295, 6, 7, 8, 9cdlemd7 30393 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  -.  s  .<_  ( P  .\/  ( F `
 P ) ) ) )  ->  ( F `  R )  =  ( G `  R ) )
3022, 23, 26, 27, 28, 29syl122anc 1191 . . . 4  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T
)  /\  R  e.  A )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `
 P )  =/= 
P )  /\  s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  ( F `  P ) ) ) )  ->  ( F `  R )  =  ( G `  R ) )
3130rexlimdv3a 2669 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =/=  P )  -> 
( E. s  e.  A  ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  ( F `  P )
) )  ->  ( F `  R )  =  ( G `  R ) ) )
3221, 31mpd 14 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =/=  P )  -> 
( F `  R
)  =  ( G `
 R ) )
3311, 32pm2.61dane 2524 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  -> 
( F `  R
)  =  ( G `
 R ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   lecple 13215   joincjn 14078   Atomscatm 29453   HLchlt 29540   LHypclh 30173   LTrncltrn 30290
This theorem is referenced by:  cdlemd  30396
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-map 6774  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-llines 29687  df-psubsp 29692  df-pmap 29693  df-padd 29985  df-lhyp 30177  df-laut 30178  df-ldil 30293  df-ltrn 30294  df-trl 30348
  Copyright terms: Public domain W3C validator