Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemd9 Unicode version

Theorem cdlemd9 30320
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 2-Jun-2012.)
Hypotheses
Ref Expression
cdlemd4.l  |-  .<_  =  ( le `  K )
cdlemd4.j  |-  .\/  =  ( join `  K )
cdlemd4.a  |-  A  =  ( Atoms `  K )
cdlemd4.h  |-  H  =  ( LHyp `  K
)
cdlemd4.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
cdlemd9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  -> 
( F `  R
)  =  ( G `
 R ) )

Proof of Theorem cdlemd9
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 simpl1 960 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =  P )  -> 
( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
) )
2 simpl2 961 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =  P )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
3 simpl3 962 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =  P )  -> 
( F `  P
)  =  ( G `
 P ) )
4 simpr 448 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =  P )  -> 
( F `  P
)  =  P )
5 cdlemd4.l . . . 4  |-  .<_  =  ( le `  K )
6 cdlemd4.j . . . 4  |-  .\/  =  ( join `  K )
7 cdlemd4.a . . . 4  |-  A  =  ( Atoms `  K )
8 cdlemd4.h . . . 4  |-  H  =  ( LHyp `  K
)
9 cdlemd4.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
105, 6, 7, 8, 9cdlemd8 30319 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  P )  =  P ) )  ->  ( F `  R )  =  ( G `  R ) )
111, 2, 3, 4, 10syl112anc 1188 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =  P )  -> 
( F `  R
)  =  ( G `
 R ) )
12 simpl11 1032 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =/=  P )  -> 
( K  e.  HL  /\  W  e.  H ) )
13 simpl2 961 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =/=  P )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
14 simp12l 1070 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  ->  F  e.  T )
1514adantr 452 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =/=  P )  ->  F  e.  T )
165, 7, 8, 9ltrnel 30253 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
1712, 15, 13, 16syl3anc 1184 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =/=  P )  -> 
( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
18 simpr 448 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =/=  P )  -> 
( F `  P
)  =/=  P )
1918necomd 2633 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =/=  P )  ->  P  =/=  ( F `  P ) )
205, 6, 7, 8cdlemb2 30155 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )  /\  P  =/=  ( F `  P
) )  ->  E. s  e.  A  ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  ( F `  P ) ) ) )
2112, 13, 17, 19, 20syl121anc 1189 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =/=  P )  ->  E. s  e.  A  ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  ( F `
 P ) ) ) )
22 simp1l1 1050 . . . . 5  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T
)  /\  R  e.  A )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `
 P )  =/= 
P )  /\  s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  ( F `  P ) ) ) )  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
) )
23 simp1l2 1051 . . . . 5  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T
)  /\  R  e.  A )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `
 P )  =/= 
P )  /\  s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  ( F `  P ) ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
24 simp2 958 . . . . . 6  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T
)  /\  R  e.  A )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `
 P )  =/= 
P )  /\  s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  ( F `  P ) ) ) )  ->  s  e.  A )
25 simp3l 985 . . . . . 6  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T
)  /\  R  e.  A )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `
 P )  =/= 
P )  /\  s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  ( F `  P ) ) ) )  ->  -.  s  .<_  W )
2624, 25jca 519 . . . . 5  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T
)  /\  R  e.  A )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `
 P )  =/= 
P )  /\  s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  ( F `  P ) ) ) )  ->  ( s  e.  A  /\  -.  s  .<_  W ) )
27 simp1l3 1052 . . . . 5  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T
)  /\  R  e.  A )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `
 P )  =/= 
P )  /\  s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  ( F `  P ) ) ) )  ->  ( F `  P )  =  ( G `  P ) )
28 simp3r 986 . . . . 5  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T
)  /\  R  e.  A )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `
 P )  =/= 
P )  /\  s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  ( F `  P ) ) ) )  ->  -.  s  .<_  ( P  .\/  ( F `  P )
) )
295, 6, 7, 8, 9cdlemd7 30318 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( s  e.  A  /\  -.  s  .<_  W ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  -.  s  .<_  ( P  .\/  ( F `
 P ) ) ) )  ->  ( F `  R )  =  ( G `  R ) )
3022, 23, 26, 27, 28, 29syl122anc 1193 . . . 4  |-  ( ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T
)  /\  R  e.  A )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `
 P )  =/= 
P )  /\  s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  ( F `  P ) ) ) )  ->  ( F `  R )  =  ( G `  R ) )
3130rexlimdv3a 2775 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =/=  P )  -> 
( E. s  e.  A  ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  ( F `  P )
) )  ->  ( F `  R )  =  ( G `  R ) ) )
3221, 31mpd 15 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  ( F `  P )  =/=  P )  -> 
( F `  R
)  =  ( G `
 R ) )
3311, 32pm2.61dane 2628 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  -> 
( F `  R
)  =  ( G `
 R ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2550   E.wrex 2650   class class class wbr 4153   ` cfv 5394  (class class class)co 6020   lecple 13463   joincjn 14328   Atomscatm 29378   HLchlt 29465   LHypclh 30098   LTrncltrn 30215
This theorem is referenced by:  cdlemd  30321
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-iun 4037  df-iin 4038  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-undef 6479  df-riota 6485  df-map 6956  df-poset 14330  df-plt 14342  df-lub 14358  df-glb 14359  df-join 14360  df-meet 14361  df-p0 14395  df-p1 14396  df-lat 14402  df-clat 14464  df-oposet 29291  df-ol 29293  df-oml 29294  df-covers 29381  df-ats 29382  df-atl 29413  df-cvlat 29437  df-hlat 29466  df-llines 29612  df-psubsp 29617  df-pmap 29618  df-padd 29910  df-lhyp 30102  df-laut 30103  df-ldil 30218  df-ltrn 30219  df-trl 30273
  Copyright terms: Public domain W3C validator