Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme0aa Unicode version

Theorem cdleme0aa 30399
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 14-Jun-2012.)
Hypotheses
Ref Expression
cdleme0.l  |-  .<_  =  ( le `  K )
cdleme0.j  |-  .\/  =  ( join `  K )
cdleme0.m  |-  ./\  =  ( meet `  K )
cdleme0.a  |-  A  =  ( Atoms `  K )
cdleme0.h  |-  H  =  ( LHyp `  K
)
cdleme0.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme0.b  |-  B  =  ( Base `  K
)
Assertion
Ref Expression
cdleme0aa  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A
)  ->  U  e.  B )

Proof of Theorem cdleme0aa
StepHypRef Expression
1 cdleme0.u . 2  |-  U  =  ( ( P  .\/  Q )  ./\  W )
2 simp1l 979 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A
)  ->  K  e.  HL )
3 hllat 29553 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
42, 3syl 15 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A
)  ->  K  e.  Lat )
5 cdleme0.b . . . . . 6  |-  B  =  ( Base `  K
)
6 cdleme0.a . . . . . 6  |-  A  =  ( Atoms `  K )
75, 6atbase 29479 . . . . 5  |-  ( P  e.  A  ->  P  e.  B )
873ad2ant2 977 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A
)  ->  P  e.  B )
95, 6atbase 29479 . . . . 5  |-  ( Q  e.  A  ->  Q  e.  B )
1093ad2ant3 978 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A
)  ->  Q  e.  B )
11 cdleme0.j . . . . 5  |-  .\/  =  ( join `  K )
125, 11latjcl 14156 . . . 4  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  Q  e.  B )  ->  ( P  .\/  Q
)  e.  B )
134, 8, 10, 12syl3anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A
)  ->  ( P  .\/  Q )  e.  B
)
14 simp1r 980 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A
)  ->  W  e.  H )
15 cdleme0.h . . . . 5  |-  H  =  ( LHyp `  K
)
165, 15lhpbase 30187 . . . 4  |-  ( W  e.  H  ->  W  e.  B )
1714, 16syl 15 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A
)  ->  W  e.  B )
18 cdleme0.m . . . 4  |-  ./\  =  ( meet `  K )
195, 18latmcl 14157 . . 3  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  B  /\  W  e.  B )  ->  (
( P  .\/  Q
)  ./\  W )  e.  B )
204, 13, 17, 19syl3anc 1182 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A
)  ->  ( ( P  .\/  Q )  ./\  W )  e.  B )
211, 20syl5eqel 2367 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A
)  ->  U  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   ` cfv 5255  (class class class)co 5858   Basecbs 13148   lecple 13215   joincjn 14078   meetcmee 14079   Latclat 14151   Atomscatm 29453   HLchlt 29540   LHypclh 30173
This theorem is referenced by:  cdleme1b  30415  cdleme5  30429  cdleme9  30442  cdleme11g  30454  cdleme11  30459  cdleme35fnpq  30638  cdleme42e  30668  cdlemeg46frv  30714  cdlemg2fv2  30789  cdlemg2m  30793
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-ov 5861  df-lat 14152  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-lhyp 30177
  Copyright terms: Public domain W3C validator