Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme0aa Structured version   Unicode version

Theorem cdleme0aa 30944
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 14-Jun-2012.)
Hypotheses
Ref Expression
cdleme0.l  |-  .<_  =  ( le `  K )
cdleme0.j  |-  .\/  =  ( join `  K )
cdleme0.m  |-  ./\  =  ( meet `  K )
cdleme0.a  |-  A  =  ( Atoms `  K )
cdleme0.h  |-  H  =  ( LHyp `  K
)
cdleme0.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme0.b  |-  B  =  ( Base `  K
)
Assertion
Ref Expression
cdleme0aa  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A
)  ->  U  e.  B )

Proof of Theorem cdleme0aa
StepHypRef Expression
1 cdleme0.u . 2  |-  U  =  ( ( P  .\/  Q )  ./\  W )
2 simp1l 981 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A
)  ->  K  e.  HL )
3 hllat 30098 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
42, 3syl 16 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A
)  ->  K  e.  Lat )
5 cdleme0.b . . . . . 6  |-  B  =  ( Base `  K
)
6 cdleme0.a . . . . . 6  |-  A  =  ( Atoms `  K )
75, 6atbase 30024 . . . . 5  |-  ( P  e.  A  ->  P  e.  B )
873ad2ant2 979 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A
)  ->  P  e.  B )
95, 6atbase 30024 . . . . 5  |-  ( Q  e.  A  ->  Q  e.  B )
1093ad2ant3 980 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A
)  ->  Q  e.  B )
11 cdleme0.j . . . . 5  |-  .\/  =  ( join `  K )
125, 11latjcl 14471 . . . 4  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  Q  e.  B )  ->  ( P  .\/  Q
)  e.  B )
134, 8, 10, 12syl3anc 1184 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A
)  ->  ( P  .\/  Q )  e.  B
)
14 simp1r 982 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A
)  ->  W  e.  H )
15 cdleme0.h . . . . 5  |-  H  =  ( LHyp `  K
)
165, 15lhpbase 30732 . . . 4  |-  ( W  e.  H  ->  W  e.  B )
1714, 16syl 16 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A
)  ->  W  e.  B )
18 cdleme0.m . . . 4  |-  ./\  =  ( meet `  K )
195, 18latmcl 14472 . . 3  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  B  /\  W  e.  B )  ->  (
( P  .\/  Q
)  ./\  W )  e.  B )
204, 13, 17, 19syl3anc 1184 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A
)  ->  ( ( P  .\/  Q )  ./\  W )  e.  B )
211, 20syl5eqel 2519 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A
)  ->  U  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   ` cfv 5446  (class class class)co 6073   Basecbs 13461   lecple 13528   joincjn 14393   meetcmee 14394   Latclat 14466   Atomscatm 29998   HLchlt 30085   LHypclh 30718
This theorem is referenced by:  cdleme1b  30960  cdleme5  30974  cdleme9  30987  cdleme11g  30999  cdleme11  31004  cdleme35fnpq  31183  cdleme42e  31213  cdlemeg46frv  31259  cdlemg2fv2  31334  cdlemg2m  31338
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-iota 5410  df-fun 5448  df-fv 5454  df-ov 6076  df-lat 14467  df-ats 30002  df-atl 30033  df-cvlat 30057  df-hlat 30086  df-lhyp 30722
  Copyright terms: Public domain W3C validator