Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme0e Unicode version

Theorem cdleme0e 30331
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 13-Jun-2012.)
Hypotheses
Ref Expression
cdleme0.l  |-  .<_  =  ( le `  K )
cdleme0.j  |-  .\/  =  ( join `  K )
cdleme0.m  |-  ./\  =  ( meet `  K )
cdleme0.a  |-  A  =  ( Atoms `  K )
cdleme0.h  |-  H  =  ( LHyp `  K
)
cdleme0.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme0c.3  |-  V  =  ( ( P  .\/  R )  ./\  W )
Assertion
Ref Expression
cdleme0e  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  U  =/=  V )

Proof of Theorem cdleme0e
StepHypRef Expression
1 cdleme0.u . . . . 5  |-  U  =  ( ( P  .\/  Q )  ./\  W )
2 cdleme0c.3 . . . . 5  |-  V  =  ( ( P  .\/  R )  ./\  W )
31, 2oveq12i 6032 . . . 4  |-  ( U 
./\  V )  =  ( ( ( P 
.\/  Q )  ./\  W )  ./\  ( ( P  .\/  R )  ./\  W ) )
4 simp1l 981 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  K  e.  HL )
5 hlol 29476 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  OL )
64, 5syl 16 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  K  e.  OL )
7 simp21l 1074 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  P  e.  A )
8 simp22 991 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  Q  e.  A )
9 eqid 2387 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  K )
10 cdleme0.j . . . . . . . 8  |-  .\/  =  ( join `  K )
11 cdleme0.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
129, 10, 11hlatjcl 29481 . . . . . . 7  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
134, 7, 8, 12syl3anc 1184 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  -> 
( P  .\/  Q
)  e.  ( Base `  K ) )
14 simp23l 1078 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  R  e.  A )
159, 10, 11hlatjcl 29481 . . . . . . 7  |-  ( ( K  e.  HL  /\  P  e.  A  /\  R  e.  A )  ->  ( P  .\/  R
)  e.  ( Base `  K ) )
164, 7, 14, 15syl3anc 1184 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  -> 
( P  .\/  R
)  e.  ( Base `  K ) )
17 simp1r 982 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  W  e.  H )
18 cdleme0.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
199, 18lhpbase 30112 . . . . . . 7  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
2017, 19syl 16 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  W  e.  ( Base `  K ) )
21 cdleme0.m . . . . . . 7  |-  ./\  =  ( meet `  K )
229, 21latmmdir 29350 . . . . . 6  |-  ( ( K  e.  OL  /\  ( ( P  .\/  Q )  e.  ( Base `  K )  /\  ( P  .\/  R )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
) )  ->  (
( ( P  .\/  Q )  ./\  ( P  .\/  R ) )  ./\  W )  =  ( ( ( P  .\/  Q
)  ./\  W )  ./\  ( ( P  .\/  R )  ./\  W )
) )
236, 13, 16, 20, 22syl13anc 1186 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  -> 
( ( ( P 
.\/  Q )  ./\  ( P  .\/  R ) )  ./\  W )  =  ( ( ( P  .\/  Q ) 
./\  W )  ./\  ( ( P  .\/  R )  ./\  W )
) )
24 hllat 29478 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  Lat )
254, 24syl 16 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  K  e.  Lat )
269, 11atbase 29404 . . . . . . . . 9  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
2714, 26syl 16 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  R  e.  ( Base `  K ) )
289, 11atbase 29404 . . . . . . . . 9  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
297, 28syl 16 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  P  e.  ( Base `  K ) )
309, 11atbase 29404 . . . . . . . . 9  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
318, 30syl 16 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  Q  e.  ( Base `  K ) )
32 simp3r 986 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  -.  R  .<_  ( P 
.\/  Q ) )
33 cdleme0.l . . . . . . . . . 10  |-  .<_  =  ( le `  K )
349, 33, 10latnlej1r 14426 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( R  e.  ( Base `  K )  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
) )  /\  -.  R  .<_  ( P  .\/  Q ) )  ->  R  =/=  Q )
3534necomd 2633 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( R  e.  ( Base `  K )  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
) )  /\  -.  R  .<_  ( P  .\/  Q ) )  ->  Q  =/=  R )
3625, 27, 29, 31, 32, 35syl131anc 1197 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  Q  =/=  R )
37 simp3 959 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  -> 
( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )
3833, 10, 11hlatcon3 29565 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
) ) )  ->  -.  P  .<_  ( Q 
.\/  R ) )
394, 7, 8, 14, 37, 38syl131anc 1197 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  -.  P  .<_  ( Q 
.\/  R ) )
4033, 10, 21, 112llnma2 29903 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A
)  /\  ( Q  =/=  R  /\  -.  P  .<_  ( Q  .\/  R
) ) )  -> 
( ( P  .\/  Q )  ./\  ( P  .\/  R ) )  =  P )
414, 8, 14, 7, 36, 39, 40syl132anc 1202 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  -> 
( ( P  .\/  Q )  ./\  ( P  .\/  R ) )  =  P )
4241oveq1d 6035 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  -> 
( ( ( P 
.\/  Q )  ./\  ( P  .\/  R ) )  ./\  W )  =  ( P  ./\  W ) )
4323, 42eqtr3d 2421 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  -> 
( ( ( P 
.\/  Q )  ./\  W )  ./\  ( ( P  .\/  R )  ./\  W ) )  =  ( P  ./\  W )
)
443, 43syl5eq 2431 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  -> 
( U  ./\  V
)  =  ( P 
./\  W ) )
45 simp1 957 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
46 simp21 990 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
47 eqid 2387 . . . . 5  |-  ( 0.
`  K )  =  ( 0. `  K
)
4833, 21, 47, 11, 18lhpmat 30144 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( P  ./\  W
)  =  ( 0.
`  K ) )
4945, 46, 48syl2anc 643 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  -> 
( P  ./\  W
)  =  ( 0.
`  K ) )
5044, 49eqtrd 2419 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  -> 
( U  ./\  V
)  =  ( 0.
`  K ) )
51 hlatl 29475 . . . 4  |-  ( K  e.  HL  ->  K  e.  AtLat )
524, 51syl 16 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  K  e.  AtLat )
53 simp3l 985 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  P  =/=  Q )
5433, 10, 21, 11, 18, 1lhpat2 30159 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  U  e.  A
)
5545, 46, 8, 53, 54syl112anc 1188 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  U  e.  A )
569, 33, 10latnlej1l 14425 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( R  e.  ( Base `  K )  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
) )  /\  -.  R  .<_  ( P  .\/  Q ) )  ->  R  =/=  P )
5756necomd 2633 . . . . 5  |-  ( ( K  e.  Lat  /\  ( R  e.  ( Base `  K )  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
) )  /\  -.  R  .<_  ( P  .\/  Q ) )  ->  P  =/=  R )
5825, 27, 29, 31, 32, 57syl131anc 1197 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  P  =/=  R )
5933, 10, 21, 11, 18, 2lhpat2 30159 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R  e.  A  /\  P  =/=  R ) )  ->  V  e.  A
)
6045, 46, 14, 58, 59syl112anc 1188 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  V  e.  A )
6121, 47, 11atnem0 29433 . . 3  |-  ( ( K  e.  AtLat  /\  U  e.  A  /\  V  e.  A )  ->  ( U  =/=  V  <->  ( U  ./\ 
V )  =  ( 0. `  K ) ) )
6252, 55, 60, 61syl3anc 1184 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  -> 
( U  =/=  V  <->  ( U  ./\  V )  =  ( 0. `  K ) ) )
6350, 62mpbird 224 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  U  =/=  V )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2550   class class class wbr 4153   ` cfv 5394  (class class class)co 6020   Basecbs 13396   lecple 13463   joincjn 14328   meetcmee 14329   0.cp0 14393   Latclat 14401   OLcol 29289   Atomscatm 29378   AtLatcal 29379   HLchlt 29465   LHypclh 30098
This theorem is referenced by:  cdleme3fN  30347  cdleme3g  30348  cdleme11e  30377
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-undef 6479  df-riota 6485  df-poset 14330  df-plt 14342  df-lub 14358  df-glb 14359  df-join 14360  df-meet 14361  df-p0 14395  df-p1 14396  df-lat 14402  df-clat 14464  df-oposet 29291  df-ol 29293  df-oml 29294  df-covers 29381  df-ats 29382  df-atl 29413  df-cvlat 29437  df-hlat 29466  df-lhyp 30102
  Copyright terms: Public domain W3C validator