Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme0ex2N Unicode version

Theorem cdleme0ex2N 31035
Description: Part of proof of Lemma E in [Crawley] p. 113. Note that  ( P  .\/  u )  =  ( Q  .\/  u ) is a shorter way to express  u  =/=  P  /\  u  =/=  Q  /\  u  .<_  ( P 
.\/  Q ). (Contributed by NM, 9-Nov-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme0.l  |-  .<_  =  ( le `  K )
cdleme0.j  |-  .\/  =  ( join `  K )
cdleme0.m  |-  ./\  =  ( meet `  K )
cdleme0.a  |-  A  =  ( Atoms `  K )
cdleme0.h  |-  H  =  ( LHyp `  K
)
cdleme0.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
Assertion
Ref Expression
cdleme0ex2N  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/= 
Q )  ->  E. u  e.  A  ( ( P  .\/  u )  =  ( Q  .\/  u
)  /\  u  .<_  W ) )
Distinct variable groups:    u, A    u, 
.\/    u,  .<_    u, P    u, Q    u, U    u, W    u, H    u, K
Allowed substitution hint:    ./\ ( u)

Proof of Theorem cdleme0ex2N
StepHypRef Expression
1 simp1 955 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/= 
Q )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp2l 981 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/= 
Q )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
3 simp2rl 1024 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/= 
Q )  ->  Q  e.  A )
4 simp3 957 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/= 
Q )  ->  P  =/=  Q )
5 cdleme0.l . . . 4  |-  .<_  =  ( le `  K )
6 cdleme0.j . . . 4  |-  .\/  =  ( join `  K )
7 cdleme0.m . . . 4  |-  ./\  =  ( meet `  K )
8 cdleme0.a . . . 4  |-  A  =  ( Atoms `  K )
9 cdleme0.h . . . 4  |-  H  =  ( LHyp `  K
)
10 cdleme0.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
115, 6, 7, 8, 9, 10cdleme0ex1N 31034 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  E. u  e.  A  ( u  .<_  ( P  .\/  Q
)  /\  u  .<_  W ) )
121, 2, 3, 4, 11syl121anc 1187 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/= 
Q )  ->  E. u  e.  A  ( u  .<_  ( P  .\/  Q
)  /\  u  .<_  W ) )
13 simp11l 1066 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q )  /\  u  e.  A  /\  u  .<_  W )  ->  K  e.  HL )
14 hlcvl 30171 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  CvLat )
1513, 14syl 15 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q )  /\  u  e.  A  /\  u  .<_  W )  ->  K  e.  CvLat )
16 simp2ll 1022 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/= 
Q )  ->  P  e.  A )
17163ad2ant1 976 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q )  /\  u  e.  A  /\  u  .<_  W )  ->  P  e.  A )
1833ad2ant1 976 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q )  /\  u  e.  A  /\  u  .<_  W )  ->  Q  e.  A )
19 simp2 956 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q )  /\  u  e.  A  /\  u  .<_  W )  ->  u  e.  A )
20 simp13 987 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q )  /\  u  e.  A  /\  u  .<_  W )  ->  P  =/=  Q )
218, 5, 6cvlsupr2 30155 . . . . . . 7  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  u  e.  A )  /\  P  =/=  Q
)  ->  ( ( P  .\/  u )  =  ( Q  .\/  u
)  <->  ( u  =/= 
P  /\  u  =/=  Q  /\  u  .<_  ( P 
.\/  Q ) ) ) )
2215, 17, 18, 19, 20, 21syl131anc 1195 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q )  /\  u  e.  A  /\  u  .<_  W )  -> 
( ( P  .\/  u )  =  ( Q  .\/  u )  <-> 
( u  =/=  P  /\  u  =/=  Q  /\  u  .<_  ( P 
.\/  Q ) ) ) )
23 simp3 957 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q )  /\  u  e.  A  /\  u  .<_  W )  ->  u  .<_  W )
24 simp2lr 1023 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/= 
Q )  ->  -.  P  .<_  W )
25243ad2ant1 976 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q )  /\  u  e.  A  /\  u  .<_  W )  ->  -.  P  .<_  W )
26 nbrne2 4057 . . . . . . . . . 10  |-  ( ( u  .<_  W  /\  -.  P  .<_  W )  ->  u  =/=  P
)
2723, 25, 26syl2anc 642 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q )  /\  u  e.  A  /\  u  .<_  W )  ->  u  =/=  P )
28 simp2rr 1025 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/= 
Q )  ->  -.  Q  .<_  W )
29283ad2ant1 976 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q )  /\  u  e.  A  /\  u  .<_  W )  ->  -.  Q  .<_  W )
30 nbrne2 4057 . . . . . . . . . 10  |-  ( ( u  .<_  W  /\  -.  Q  .<_  W )  ->  u  =/=  Q
)
3123, 29, 30syl2anc 642 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q )  /\  u  e.  A  /\  u  .<_  W )  ->  u  =/=  Q )
3227, 31jca 518 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q )  /\  u  e.  A  /\  u  .<_  W )  -> 
( u  =/=  P  /\  u  =/=  Q
) )
3332biantrurd 494 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q )  /\  u  e.  A  /\  u  .<_  W )  -> 
( u  .<_  ( P 
.\/  Q )  <->  ( (
u  =/=  P  /\  u  =/=  Q )  /\  u  .<_  ( P  .\/  Q ) ) ) )
34 df-3an 936 . . . . . . 7  |-  ( ( u  =/=  P  /\  u  =/=  Q  /\  u  .<_  ( P  .\/  Q
) )  <->  ( (
u  =/=  P  /\  u  =/=  Q )  /\  u  .<_  ( P  .\/  Q ) ) )
3533, 34syl6rbbr 255 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q )  /\  u  e.  A  /\  u  .<_  W )  -> 
( ( u  =/= 
P  /\  u  =/=  Q  /\  u  .<_  ( P 
.\/  Q ) )  <-> 
u  .<_  ( P  .\/  Q ) ) )
3622, 35bitrd 244 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q )  /\  u  e.  A  /\  u  .<_  W )  -> 
( ( P  .\/  u )  =  ( Q  .\/  u )  <-> 
u  .<_  ( P  .\/  Q ) ) )
37363expia 1153 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q )  /\  u  e.  A )  ->  ( u  .<_  W  -> 
( ( P  .\/  u )  =  ( Q  .\/  u )  <-> 
u  .<_  ( P  .\/  Q ) ) ) )
3837pm5.32rd 621 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q )  /\  u  e.  A )  ->  ( ( ( P 
.\/  u )  =  ( Q  .\/  u
)  /\  u  .<_  W )  <->  ( u  .<_  ( P  .\/  Q )  /\  u  .<_  W ) ) )
3938rexbidva 2573 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/= 
Q )  ->  ( E. u  e.  A  ( ( P  .\/  u )  =  ( Q  .\/  u )  /\  u  .<_  W )  <->  E. u  e.  A  ( u  .<_  ( P 
.\/  Q )  /\  u  .<_  W ) ) )
4012, 39mpbird 223 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/= 
Q )  ->  E. u  e.  A  ( ( P  .\/  u )  =  ( Q  .\/  u
)  /\  u  .<_  W ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   E.wrex 2557   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   lecple 13231   joincjn 14094   meetcmee 14095   Atomscatm 30075   CvLatclc 30077   HLchlt 30162   LHypclh 30795
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-p0 14161  df-p1 14162  df-lat 14168  df-clat 14230  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163  df-lhyp 30799
  Copyright terms: Public domain W3C validator