Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme11g Unicode version

Theorem cdleme11g 30454
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 30459. (Contributed by NM, 14-Jun-2012.)
Hypotheses
Ref Expression
cdleme11.l  |-  .<_  =  ( le `  K )
cdleme11.j  |-  .\/  =  ( join `  K )
cdleme11.m  |-  ./\  =  ( meet `  K )
cdleme11.a  |-  A  =  ( Atoms `  K )
cdleme11.h  |-  H  =  ( LHyp `  K
)
cdleme11.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme11.c  |-  C  =  ( ( P  .\/  S )  ./\  W )
cdleme11.d  |-  D  =  ( ( P  .\/  T )  ./\  W )
cdleme11.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
Assertion
Ref Expression
cdleme11g  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( Q  .\/  F )  =  ( Q  .\/  C ) )

Proof of Theorem cdleme11g
StepHypRef Expression
1 cdleme11.f . . . 4  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
21oveq2i 5869 . . 3  |-  ( Q 
.\/  F )  =  ( Q  .\/  (
( S  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) ) )
3 simp1l 979 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  K  e.  HL )
4 simp22l 1074 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  Q  e.  A )
5 hllat 29553 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
63, 5syl 15 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  K  e.  Lat )
7 simp23 990 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  S  e.  A )
8 eqid 2283 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
9 cdleme11.a . . . . . . 7  |-  A  =  ( Atoms `  K )
108, 9atbase 29479 . . . . . 6  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
117, 10syl 15 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  S  e.  ( Base `  K )
)
12 simp1 955 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( K  e.  HL  /\  W  e.  H ) )
13 simp21 988 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  P  e.  A )
14 cdleme11.l . . . . . . 7  |-  .<_  =  ( le `  K )
15 cdleme11.j . . . . . . 7  |-  .\/  =  ( join `  K )
16 cdleme11.m . . . . . . 7  |-  ./\  =  ( meet `  K )
17 cdleme11.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
18 cdleme11.u . . . . . . 7  |-  U  =  ( ( P  .\/  Q )  ./\  W )
1914, 15, 16, 9, 17, 18, 8cdleme0aa 30399 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A
)  ->  U  e.  ( Base `  K )
)
2012, 13, 4, 19syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  U  e.  ( Base `  K )
)
218, 15latjcl 14156 . . . . 5  |-  ( ( K  e.  Lat  /\  S  e.  ( Base `  K )  /\  U  e.  ( Base `  K
) )  ->  ( S  .\/  U )  e.  ( Base `  K
) )
226, 11, 20, 21syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( S  .\/  U )  e.  (
Base `  K )
)
238, 9atbase 29479 . . . . . 6  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
244, 23syl 15 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  Q  e.  ( Base `  K )
)
258, 9atbase 29479 . . . . . . . 8  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
2613, 25syl 15 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  P  e.  ( Base `  K )
)
278, 15latjcl 14156 . . . . . . 7  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  S  e.  ( Base `  K
) )  ->  ( P  .\/  S )  e.  ( Base `  K
) )
286, 26, 11, 27syl3anc 1182 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( P  .\/  S )  e.  (
Base `  K )
)
29 simp1r 980 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  W  e.  H )
308, 17lhpbase 30187 . . . . . . 7  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
3129, 30syl 15 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  W  e.  ( Base `  K )
)
328, 16latmcl 14157 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( P  .\/  S )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  S )  ./\  W )  e.  ( Base `  K ) )
336, 28, 31, 32syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( ( P  .\/  S )  ./\  W )  e.  ( Base `  K ) )
348, 15latjcl 14156 . . . . 5  |-  ( ( K  e.  Lat  /\  Q  e.  ( Base `  K )  /\  (
( P  .\/  S
)  ./\  W )  e.  ( Base `  K
) )  ->  ( Q  .\/  ( ( P 
.\/  S )  ./\  W ) )  e.  (
Base `  K )
)
356, 24, 33, 34syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
)  e.  ( Base `  K ) )
368, 14, 15latlej1 14166 . . . . 5  |-  ( ( K  e.  Lat  /\  Q  e.  ( Base `  K )  /\  (
( P  .\/  S
)  ./\  W )  e.  ( Base `  K
) )  ->  Q  .<_  ( Q  .\/  (
( P  .\/  S
)  ./\  W )
) )
376, 24, 33, 36syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  Q  .<_  ( Q  .\/  ( ( P  .\/  S ) 
./\  W ) ) )
388, 14, 15, 16, 9atmod1i1 30046 . . . 4  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  ( S  .\/  U
)  e.  ( Base `  K )  /\  ( Q  .\/  ( ( P 
.\/  S )  ./\  W ) )  e.  (
Base `  K )
)  /\  Q  .<_  ( Q  .\/  ( ( P  .\/  S ) 
./\  W ) ) )  ->  ( Q  .\/  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) ) )  =  ( ( Q  .\/  ( S  .\/  U ) )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) ) )
393, 4, 22, 35, 37, 38syl131anc 1195 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( Q  .\/  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) ) )  =  ( ( Q  .\/  ( S  .\/  U ) )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) ) )
402, 39syl5eq 2327 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( Q  .\/  F )  =  ( ( Q  .\/  ( S  .\/  U ) ) 
./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) ) )
41 simp22 989 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
4214, 15, 16, 9, 17, 18cdleme0cq 30404 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( Q  .\/  U )  =  ( P  .\/  Q ) )
4312, 13, 41, 42syl12anc 1180 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( Q  .\/  U )  =  ( P  .\/  Q ) )
4443oveq2d 5874 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( S  .\/  ( Q  .\/  U
) )  =  ( S  .\/  ( P 
.\/  Q ) ) )
458, 15latj12 14202 . . . . 5  |-  ( ( K  e.  Lat  /\  ( Q  e.  ( Base `  K )  /\  S  e.  ( Base `  K )  /\  U  e.  ( Base `  K
) ) )  -> 
( Q  .\/  ( S  .\/  U ) )  =  ( S  .\/  ( Q  .\/  U ) ) )
466, 24, 11, 20, 45syl13anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( Q  .\/  ( S  .\/  U
) )  =  ( S  .\/  ( Q 
.\/  U ) ) )
478, 15latj13 14204 . . . . 5  |-  ( ( K  e.  Lat  /\  ( Q  e.  ( Base `  K )  /\  P  e.  ( Base `  K )  /\  S  e.  ( Base `  K
) ) )  -> 
( Q  .\/  ( P  .\/  S ) )  =  ( S  .\/  ( P  .\/  Q ) ) )
486, 24, 26, 11, 47syl13anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( Q  .\/  ( P  .\/  S
) )  =  ( S  .\/  ( P 
.\/  Q ) ) )
4944, 46, 483eqtr4d 2325 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( Q  .\/  ( S  .\/  U
) )  =  ( Q  .\/  ( P 
.\/  S ) ) )
5049oveq1d 5873 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( ( Q  .\/  ( S  .\/  U ) )  ./\  ( Q  .\/  ( ( P 
.\/  S )  ./\  W ) ) )  =  ( ( Q  .\/  ( P  .\/  S ) )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) ) )
518, 14, 16latmle1 14182 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( P  .\/  S )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  S )  ./\  W )  .<_  ( P  .\/  S ) )
526, 28, 31, 51syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( ( P  .\/  S )  ./\  W )  .<_  ( P  .\/  S ) )
538, 14, 15latjlej2 14172 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( ( ( P 
.\/  S )  ./\  W )  e.  ( Base `  K )  /\  ( P  .\/  S )  e.  ( Base `  K
)  /\  Q  e.  ( Base `  K )
) )  ->  (
( ( P  .\/  S )  ./\  W )  .<_  ( P  .\/  S
)  ->  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
)  .<_  ( Q  .\/  ( P  .\/  S ) ) ) )
546, 33, 28, 24, 53syl13anc 1184 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( (
( P  .\/  S
)  ./\  W )  .<_  ( P  .\/  S
)  ->  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
)  .<_  ( Q  .\/  ( P  .\/  S ) ) ) )
5552, 54mpd 14 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
)  .<_  ( Q  .\/  ( P  .\/  S ) ) )
568, 15latjcl 14156 . . . . . 6  |-  ( ( K  e.  Lat  /\  Q  e.  ( Base `  K )  /\  ( P  .\/  S )  e.  ( Base `  K
) )  ->  ( Q  .\/  ( P  .\/  S ) )  e.  (
Base `  K )
)
576, 24, 28, 56syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( Q  .\/  ( P  .\/  S
) )  e.  (
Base `  K )
)
588, 14, 16latleeqm2 14186 . . . . 5  |-  ( ( K  e.  Lat  /\  ( Q  .\/  ( ( P  .\/  S ) 
./\  W ) )  e.  ( Base `  K
)  /\  ( Q  .\/  ( P  .\/  S
) )  e.  (
Base `  K )
)  ->  ( ( Q  .\/  ( ( P 
.\/  S )  ./\  W ) )  .<_  ( Q 
.\/  ( P  .\/  S ) )  <->  ( ( Q  .\/  ( P  .\/  S ) )  ./\  ( Q  .\/  ( ( P 
.\/  S )  ./\  W ) ) )  =  ( Q  .\/  (
( P  .\/  S
)  ./\  W )
) ) )
596, 35, 57, 58syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( ( Q  .\/  ( ( P 
.\/  S )  ./\  W ) )  .<_  ( Q 
.\/  ( P  .\/  S ) )  <->  ( ( Q  .\/  ( P  .\/  S ) )  ./\  ( Q  .\/  ( ( P 
.\/  S )  ./\  W ) ) )  =  ( Q  .\/  (
( P  .\/  S
)  ./\  W )
) ) )
6055, 59mpbid 201 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( ( Q  .\/  ( P  .\/  S ) )  ./\  ( Q  .\/  ( ( P 
.\/  S )  ./\  W ) ) )  =  ( Q  .\/  (
( P  .\/  S
)  ./\  W )
) )
61 cdleme11.c . . . 4  |-  C  =  ( ( P  .\/  S )  ./\  W )
6261oveq2i 5869 . . 3  |-  ( Q 
.\/  C )  =  ( Q  .\/  (
( P  .\/  S
)  ./\  W )
)
6360, 62syl6eqr 2333 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( ( Q  .\/  ( P  .\/  S ) )  ./\  ( Q  .\/  ( ( P 
.\/  S )  ./\  W ) ) )  =  ( Q  .\/  C
) )
6440, 50, 633eqtrd 2319 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( Q  .\/  F )  =  ( Q  .\/  C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Basecbs 13148   lecple 13215   joincjn 14078   meetcmee 14079   Latclat 14151   Atomscatm 29453   HLchlt 29540   LHypclh 30173
This theorem is referenced by:  cdleme11h  30455  cdleme11j  30456  cdleme15a  30463
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-psubsp 29692  df-pmap 29693  df-padd 29985  df-lhyp 30177
  Copyright terms: Public domain W3C validator