Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme13 Structured version   Unicode version

Theorem cdleme13 31069
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, "<s,t,p> and <f(s),f(t),q> are centrally perspective."  F and  G represent f(s) and f(t) respectively. (Contributed by NM, 7-Oct-2012.)
Hypotheses
Ref Expression
cdleme12.l  |-  .<_  =  ( le `  K )
cdleme12.j  |-  .\/  =  ( join `  K )
cdleme12.m  |-  ./\  =  ( meet `  K )
cdleme12.a  |-  A  =  ( Atoms `  K )
cdleme12.h  |-  H  =  ( LHyp `  K
)
cdleme12.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme12.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme12.g  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
Assertion
Ref Expression
cdleme13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( S  =/= 
T  /\  -.  U  .<_  ( S  .\/  T
) ) ) )  ->  ( ( S 
.\/  F )  ./\  ( T  .\/  G ) )  .<_  ( P  .\/  Q ) )

Proof of Theorem cdleme13
StepHypRef Expression
1 cdleme12.l . . . 4  |-  .<_  =  ( le `  K )
2 cdleme12.j . . . 4  |-  .\/  =  ( join `  K )
3 cdleme12.m . . . 4  |-  ./\  =  ( meet `  K )
4 cdleme12.a . . . 4  |-  A  =  ( Atoms `  K )
5 cdleme12.h . . . 4  |-  H  =  ( LHyp `  K
)
6 cdleme12.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
7 cdleme12.f . . . 4  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
8 cdleme12.g . . . 4  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
91, 2, 3, 4, 5, 6, 7, 8cdleme12 31068 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( S  =/= 
T  /\  -.  U  .<_  ( S  .\/  T
) ) ) )  ->  ( ( S 
.\/  F )  ./\  ( T  .\/  G ) )  =  U )
109, 6syl6eq 2484 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( S  =/= 
T  /\  -.  U  .<_  ( S  .\/  T
) ) ) )  ->  ( ( S 
.\/  F )  ./\  ( T  .\/  G ) )  =  ( ( P  .\/  Q ) 
./\  W ) )
11 simp1l 981 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( S  =/= 
T  /\  -.  U  .<_  ( S  .\/  T
) ) ) )  ->  K  e.  HL )
12 hllat 30161 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
1311, 12syl 16 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( S  =/= 
T  /\  -.  U  .<_  ( S  .\/  T
) ) ) )  ->  K  e.  Lat )
14 simp21l 1074 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( S  =/= 
T  /\  -.  U  .<_  ( S  .\/  T
) ) ) )  ->  P  e.  A
)
15 simp22 991 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( S  =/= 
T  /\  -.  U  .<_  ( S  .\/  T
) ) ) )  ->  Q  e.  A
)
16 eqid 2436 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
1716, 2, 4hlatjcl 30164 . . . 4  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
1811, 14, 15, 17syl3anc 1184 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( S  =/= 
T  /\  -.  U  .<_  ( S  .\/  T
) ) ) )  ->  ( P  .\/  Q )  e.  ( Base `  K ) )
19 simp1r 982 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( S  =/= 
T  /\  -.  U  .<_  ( S  .\/  T
) ) ) )  ->  W  e.  H
)
2016, 5lhpbase 30795 . . . 4  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
2119, 20syl 16 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( S  =/= 
T  /\  -.  U  .<_  ( S  .\/  T
) ) ) )  ->  W  e.  (
Base `  K )
)
2216, 1, 3latmle1 14505 . . 3  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  ./\  W )  .<_  ( P  .\/  Q ) )
2313, 18, 21, 22syl3anc 1184 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( S  =/= 
T  /\  -.  U  .<_  ( S  .\/  T
) ) ) )  ->  ( ( P 
.\/  Q )  ./\  W )  .<_  ( P  .\/  Q ) )
2410, 23eqbrtrd 4232 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( S  =/= 
T  /\  -.  U  .<_  ( S  .\/  T
) ) ) )  ->  ( ( S 
.\/  F )  ./\  ( T  .\/  G ) )  .<_  ( P  .\/  Q ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2599   class class class wbr 4212   ` cfv 5454  (class class class)co 6081   Basecbs 13469   lecple 13536   joincjn 14401   meetcmee 14402   Latclat 14474   Atomscatm 30061   HLchlt 30148   LHypclh 30781
This theorem is referenced by:  cdleme14  31070
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-undef 6543  df-riota 6549  df-poset 14403  df-plt 14415  df-lub 14431  df-glb 14432  df-join 14433  df-meet 14434  df-p0 14468  df-p1 14469  df-lat 14475  df-clat 14537  df-oposet 29974  df-ol 29976  df-oml 29977  df-covers 30064  df-ats 30065  df-atl 30096  df-cvlat 30120  df-hlat 30149  df-psubsp 30300  df-pmap 30301  df-padd 30593  df-lhyp 30785
  Copyright terms: Public domain W3C validator