Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme19b Unicode version

Theorem cdleme19b 30493
Description: Part of proof of Lemma E in [Crawley] p. 113, 5th paragraph on p. 114, 1st line.  D,  F,  G represent s2, f(s), f(t). In their notation, we prove that if r 
<_ s  \/ t, then s2  <_ f(s)  \/ f(t). (Contributed by NM, 13-Nov-2012.)
Hypotheses
Ref Expression
cdleme19.l  |-  .<_  =  ( le `  K )
cdleme19.j  |-  .\/  =  ( join `  K )
cdleme19.m  |-  ./\  =  ( meet `  K )
cdleme19.a  |-  A  =  ( Atoms `  K )
cdleme19.h  |-  H  =  ( LHyp `  K
)
cdleme19.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme19.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme19.g  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
cdleme19.d  |-  D  =  ( ( R  .\/  S )  ./\  W )
cdleme19.y  |-  Y  =  ( ( R  .\/  T )  ./\  W )
Assertion
Ref Expression
cdleme19b  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  D  .<_  ( F  .\/  G
) )

Proof of Theorem cdleme19b
StepHypRef Expression
1 simp11l 1066 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  K  e.  HL )
2 simp23 990 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  R  e.  A )
3 simp21l 1072 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  S  e.  A )
4 simp22l 1074 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  T  e.  A )
5 simp33l 1082 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  R  .<_  ( P  .\/  Q
) )
6 simp32l 1080 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  -.  S  .<_  ( P  .\/  Q ) )
7 simp33r 1083 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  R  .<_  ( S  .\/  T
) )
8 cdleme19.l . . . . 5  |-  .<_  =  ( le `  K )
9 cdleme19.j . . . . 5  |-  .\/  =  ( join `  K )
10 cdleme19.m . . . . 5  |-  ./\  =  ( meet `  K )
11 cdleme19.a . . . . 5  |-  A  =  ( Atoms `  K )
12 cdleme19.h . . . . 5  |-  H  =  ( LHyp `  K
)
13 cdleme19.u . . . . 5  |-  U  =  ( ( P  .\/  Q )  ./\  W )
14 cdleme19.f . . . . 5  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
15 cdleme19.g . . . . 5  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
16 cdleme19.d . . . . 5  |-  D  =  ( ( R  .\/  S )  ./\  W )
17 cdleme19.y . . . . 5  |-  Y  =  ( ( R  .\/  T )  ./\  W )
188, 9, 10, 11, 12, 13, 14, 15, 16, 17cdleme19a 30492 . . . 4  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  D  =  ( ( S 
.\/  T )  ./\  W ) )
191, 2, 3, 4, 5, 6, 7, 18syl133anc 1205 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  D  =  ( ( S 
.\/  T )  ./\  W ) )
20 simp11 985 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
21 simp12 986 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
22 simp13 987 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
23 simp21 988 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  ( S  e.  A  /\  -.  S  .<_  W ) )
24 simp22 989 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  ( T  e.  A  /\  -.  T  .<_  W ) )
25 simp31 991 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  ( P  =/=  Q  /\  S  =/=  T ) )
26 simp32r 1081 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  -.  T  .<_  ( P  .\/  Q ) )
278, 9, 10, 11, 12, 13, 14, 15cdleme16 30474 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) ) )  ->  ( ( S  .\/  T )  ./\  W )  =  ( ( F  .\/  G ) 
./\  W ) )
2820, 21, 22, 23, 24, 25, 6, 26, 27syl332anc 1213 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  (
( S  .\/  T
)  ./\  W )  =  ( ( F 
.\/  G )  ./\  W ) )
2919, 28eqtrd 2315 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  D  =  ( ( F 
.\/  G )  ./\  W ) )
30 hllat 29553 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
311, 30syl 15 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  K  e.  Lat )
32 simp11r 1067 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  W  e.  H )
33 simp12l 1068 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  P  e.  A )
34 simp13l 1070 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  Q  e.  A )
35 eqid 2283 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
368, 9, 10, 11, 12, 13, 14, 35cdleme1b 30415 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  S  e.  A ) )  ->  F  e.  ( Base `  K ) )
371, 32, 33, 34, 3, 36syl23anc 1189 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  F  e.  ( Base `  K
) )
388, 9, 10, 11, 12, 13, 15, 35cdleme1b 30415 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  T  e.  A ) )  ->  G  e.  ( Base `  K ) )
391, 32, 33, 34, 4, 38syl23anc 1189 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  G  e.  ( Base `  K
) )
4035, 9latjcl 14156 . . . 4  |-  ( ( K  e.  Lat  /\  F  e.  ( Base `  K )  /\  G  e.  ( Base `  K
) )  ->  ( F  .\/  G )  e.  ( Base `  K
) )
4131, 37, 39, 40syl3anc 1182 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  ( F  .\/  G )  e.  ( Base `  K
) )
4235, 12lhpbase 30187 . . . 4  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
4332, 42syl 15 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  W  e.  ( Base `  K
) )
4435, 8, 10latmle1 14182 . . 3  |-  ( ( K  e.  Lat  /\  ( F  .\/  G )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( F  .\/  G )  ./\  W )  .<_  ( F  .\/  G ) )
4531, 41, 43, 44syl3anc 1182 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  (
( F  .\/  G
)  ./\  W )  .<_  ( F  .\/  G
) )
4629, 45eqbrtrd 4043 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  D  .<_  ( F  .\/  G
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Basecbs 13148   lecple 13215   joincjn 14078   meetcmee 14079   Latclat 14151   Atomscatm 29453   HLchlt 29540   LHypclh 30173
This theorem is referenced by:  cdleme19d  30495
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-llines 29687  df-lplanes 29688  df-lvols 29689  df-lines 29690  df-psubsp 29692  df-pmap 29693  df-padd 29985  df-lhyp 30177
  Copyright terms: Public domain W3C validator