Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme1b Unicode version

Theorem cdleme1b 29788
Description: Part of proof of Lemma E in [Crawley] p. 113. Utility lemma showing  F is a lattice element.  F represents their f(r). (Contributed by NM, 6-Jun-2012.)
Hypotheses
Ref Expression
cdleme1.l  |-  .<_  =  ( le `  K )
cdleme1.j  |-  .\/  =  ( join `  K )
cdleme1.m  |-  ./\  =  ( meet `  K )
cdleme1.a  |-  A  =  ( Atoms `  K )
cdleme1.h  |-  H  =  ( LHyp `  K
)
cdleme1.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme1.f  |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
cdleme1.b  |-  B  =  ( Base `  K
)
Assertion
Ref Expression
cdleme1b  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  ->  F  e.  B )

Proof of Theorem cdleme1b
StepHypRef Expression
1 cdleme1.f . 2  |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
2 hllat 28926 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
32ad2antrr 706 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  ->  K  e.  Lat )
4 simpr3 963 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  ->  R  e.  A )
5 cdleme1.b . . . . . 6  |-  B  =  ( Base `  K
)
6 cdleme1.a . . . . . 6  |-  A  =  ( Atoms `  K )
75, 6atbase 28852 . . . . 5  |-  ( R  e.  A  ->  R  e.  B )
84, 7syl 15 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  ->  R  e.  B )
9 cdleme1.l . . . . . 6  |-  .<_  =  ( le `  K )
10 cdleme1.j . . . . . 6  |-  .\/  =  ( join `  K )
11 cdleme1.m . . . . . 6  |-  ./\  =  ( meet `  K )
12 cdleme1.h . . . . . 6  |-  H  =  ( LHyp `  K
)
13 cdleme1.u . . . . . 6  |-  U  =  ( ( P  .\/  Q )  ./\  W )
149, 10, 11, 6, 12, 13, 5cdleme0aa 29772 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A
)  ->  U  e.  B )
15143adant3r3 1162 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  ->  U  e.  B )
165, 10latjcl 14156 . . . 4  |-  ( ( K  e.  Lat  /\  R  e.  B  /\  U  e.  B )  ->  ( R  .\/  U
)  e.  B )
173, 8, 15, 16syl3anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  -> 
( R  .\/  U
)  e.  B )
18 simpr2 962 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  ->  Q  e.  A )
195, 6atbase 28852 . . . . 5  |-  ( Q  e.  A  ->  Q  e.  B )
2018, 19syl 15 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  ->  Q  e.  B )
21 simpr1 961 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  ->  P  e.  A )
225, 6atbase 28852 . . . . . . 7  |-  ( P  e.  A  ->  P  e.  B )
2321, 22syl 15 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  ->  P  e.  B )
245, 10latjcl 14156 . . . . . 6  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  R  e.  B )  ->  ( P  .\/  R
)  e.  B )
253, 23, 8, 24syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  -> 
( P  .\/  R
)  e.  B )
265, 12lhpbase 29560 . . . . . 6  |-  ( W  e.  H  ->  W  e.  B )
2726ad2antlr 707 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  ->  W  e.  B )
285, 11latmcl 14157 . . . . 5  |-  ( ( K  e.  Lat  /\  ( P  .\/  R )  e.  B  /\  W  e.  B )  ->  (
( P  .\/  R
)  ./\  W )  e.  B )
293, 25, 27, 28syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  -> 
( ( P  .\/  R )  ./\  W )  e.  B )
305, 10latjcl 14156 . . . 4  |-  ( ( K  e.  Lat  /\  Q  e.  B  /\  ( ( P  .\/  R )  ./\  W )  e.  B )  ->  ( Q  .\/  ( ( P 
.\/  R )  ./\  W ) )  e.  B
)
313, 20, 29, 30syl3anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  -> 
( Q  .\/  (
( P  .\/  R
)  ./\  W )
)  e.  B )
325, 11latmcl 14157 . . 3  |-  ( ( K  e.  Lat  /\  ( R  .\/  U )  e.  B  /\  ( Q  .\/  ( ( P 
.\/  R )  ./\  W ) )  e.  B
)  ->  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R ) 
./\  W ) ) )  e.  B )
333, 17, 31, 32syl3anc 1182 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  -> 
( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )  e.  B
)
341, 33syl5eqel 2367 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  ->  F  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   ` cfv 5255  (class class class)co 5858   Basecbs 13148   lecple 13215   joincjn 14078   meetcmee 14079   Latclat 14151   Atomscatm 28826   HLchlt 28913   LHypclh 29546
This theorem is referenced by:  cdleme3c  29792  cdleme4a  29801  cdleme5  29802  cdleme7e  29809  cdleme11  29832  cdleme15  29840  cdleme22gb  29856  cdleme19b  29866  cdleme19e  29869  cdleme20d  29874  cdleme20j  29880  cdleme20k  29881  cdleme20l2  29883  cdleme20l  29884  cdleme20m  29885  cdleme22e  29906  cdleme22eALTN  29907  cdleme22f  29908  cdleme27cl  29928  cdlemefr27cl  29965  cdleme35fnpq  30011
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-ov 5861  df-lat 14152  df-ats 28830  df-atl 28861  df-cvlat 28885  df-hlat 28914  df-lhyp 29550
  Copyright terms: Public domain W3C validator