Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme20 Structured version   Unicode version

Theorem cdleme20 31183
Description: Combine cdleme19f 31167 and cdleme20m 31182 to eliminate  -.  R  .<_  ( S  .\/  T ) condition. (Contributed by NM, 28-Nov-2012.)
Hypotheses
Ref Expression
cdleme19.l  |-  .<_  =  ( le `  K )
cdleme19.j  |-  .\/  =  ( join `  K )
cdleme19.m  |-  ./\  =  ( meet `  K )
cdleme19.a  |-  A  =  ( Atoms `  K )
cdleme19.h  |-  H  =  ( LHyp `  K
)
cdleme19.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme19.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme19.g  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
cdleme19.d  |-  D  =  ( ( R  .\/  S )  ./\  W )
cdleme19.y  |-  Y  =  ( ( R  .\/  T )  ./\  W )
cdleme20.v  |-  V  =  ( ( S  .\/  T )  ./\  W )
cdleme20.n  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  D ) )
cdleme20.o  |-  O  =  ( ( P  .\/  Q )  ./\  ( G  .\/  Y ) )
Assertion
Ref Expression
cdleme20  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  U  .<_  ( S  .\/  T
) ) )  ->  N  =  O )

Proof of Theorem cdleme20
StepHypRef Expression
1 simpl1 961 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  U  .<_  ( S  .\/  T
) ) )  /\  R  .<_  ( S  .\/  T ) )  ->  (
( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
2 simpl22 1037 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  U  .<_  ( S  .\/  T
) ) )  /\  R  .<_  ( S  .\/  T ) )  ->  ( S  e.  A  /\  -.  S  .<_  W ) )
3 simpl23 1038 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  U  .<_  ( S  .\/  T
) ) )  /\  R  .<_  ( S  .\/  T ) )  ->  ( T  e.  A  /\  -.  T  .<_  W ) )
4 simp21l 1075 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  U  .<_  ( S  .\/  T
) ) )  ->  R  e.  A )
54adantr 453 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  U  .<_  ( S  .\/  T
) ) )  /\  R  .<_  ( S  .\/  T ) )  ->  R  e.  A )
6 simpl31 1039 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  U  .<_  ( S  .\/  T
) ) )  /\  R  .<_  ( S  .\/  T ) )  ->  ( P  =/=  Q  /\  S  =/=  T ) )
7 simp321 1108 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  U  .<_  ( S  .\/  T
) ) )  ->  -.  S  .<_  ( P 
.\/  Q ) )
87adantr 453 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  U  .<_  ( S  .\/  T
) ) )  /\  R  .<_  ( S  .\/  T ) )  ->  -.  S  .<_  ( P  .\/  Q ) )
9 simp322 1109 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  U  .<_  ( S  .\/  T
) ) )  ->  -.  T  .<_  ( P 
.\/  Q ) )
109adantr 453 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  U  .<_  ( S  .\/  T
) ) )  /\  R  .<_  ( S  .\/  T ) )  ->  -.  T  .<_  ( P  .\/  Q ) )
118, 10jca 520 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  U  .<_  ( S  .\/  T
) ) )  /\  R  .<_  ( S  .\/  T ) )  ->  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) ) )
12 simp323 1110 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  U  .<_  ( S  .\/  T
) ) )  ->  R  .<_  ( P  .\/  Q ) )
1312anim1i 553 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  U  .<_  ( S  .\/  T
) ) )  /\  R  .<_  ( S  .\/  T ) )  ->  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S  .\/  T ) ) )
14 cdleme19.l . . . 4  |-  .<_  =  ( le `  K )
15 cdleme19.j . . . 4  |-  .\/  =  ( join `  K )
16 cdleme19.m . . . 4  |-  ./\  =  ( meet `  K )
17 cdleme19.a . . . 4  |-  A  =  ( Atoms `  K )
18 cdleme19.h . . . 4  |-  H  =  ( LHyp `  K
)
19 cdleme19.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
20 cdleme19.f . . . 4  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
21 cdleme19.g . . . 4  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
22 cdleme19.d . . . 4  |-  D  =  ( ( R  .\/  S )  ./\  W )
23 cdleme19.y . . . 4  |-  Y  =  ( ( R  .\/  T )  ./\  W )
24 cdleme20.n . . . 4  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  D ) )
25 cdleme20.o . . . 4  |-  O  =  ( ( P  .\/  Q )  ./\  ( G  .\/  Y ) )
2614, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25cdleme19f 31167 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  N  =  O )
271, 2, 3, 5, 6, 11, 13, 26syl133anc 1208 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  U  .<_  ( S  .\/  T
) ) )  /\  R  .<_  ( S  .\/  T ) )  ->  N  =  O )
28 simpl11 1033 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  U  .<_  ( S  .\/  T
) ) )  /\  -.  R  .<_  ( S 
.\/  T ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
29 simpl12 1034 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  U  .<_  ( S  .\/  T
) ) )  /\  -.  R  .<_  ( S 
.\/  T ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
30 simpl13 1035 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  U  .<_  ( S  .\/  T
) ) )  /\  -.  R  .<_  ( S 
.\/  T ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
31 simpl21 1036 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  U  .<_  ( S  .\/  T
) ) )  /\  -.  R  .<_  ( S 
.\/  T ) )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
32 simpl22 1037 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  U  .<_  ( S  .\/  T
) ) )  /\  -.  R  .<_  ( S 
.\/  T ) )  ->  ( S  e.  A  /\  -.  S  .<_  W ) )
33 simpl23 1038 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  U  .<_  ( S  .\/  T
) ) )  /\  -.  R  .<_  ( S 
.\/  T ) )  ->  ( T  e.  A  /\  -.  T  .<_  W ) )
34 simpl31 1039 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  U  .<_  ( S  .\/  T
) ) )  /\  -.  R  .<_  ( S 
.\/  T ) )  ->  ( P  =/= 
Q  /\  S  =/=  T ) )
35 simpl32 1040 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  U  .<_  ( S  .\/  T
) ) )  /\  -.  R  .<_  ( S 
.\/  T ) )  ->  ( -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
)  /\  R  .<_  ( P  .\/  Q ) ) )
36 simpr 449 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  U  .<_  ( S  .\/  T
) ) )  /\  -.  R  .<_  ( S 
.\/  T ) )  ->  -.  R  .<_  ( S  .\/  T ) )
37 simpl33 1041 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  U  .<_  ( S  .\/  T
) ) )  /\  -.  R  .<_  ( S 
.\/  T ) )  ->  -.  U  .<_  ( S  .\/  T ) )
3836, 37jca 520 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  U  .<_  ( S  .\/  T
) ) )  /\  -.  R  .<_  ( S 
.\/  T ) )  ->  ( -.  R  .<_  ( S  .\/  T
)  /\  -.  U  .<_  ( S  .\/  T
) ) )
39 cdleme20.v . . . 4  |-  V  =  ( ( S  .\/  T )  ./\  W )
4014, 15, 16, 17, 18, 19, 20, 21, 22, 23, 39, 24, 25cdleme20m 31182 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  ( -.  R  .<_  ( S  .\/  T )  /\  -.  U  .<_  ( S  .\/  T ) ) ) )  ->  N  =  O )
4128, 29, 30, 31, 32, 33, 34, 35, 38, 40syl333anc 1217 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  U  .<_  ( S  .\/  T
) ) )  /\  -.  R  .<_  ( S 
.\/  T ) )  ->  N  =  O )
4227, 41pm2.61dan 768 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  U  .<_  ( S  .\/  T
) ) )  ->  N  =  O )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2601   class class class wbr 4214   ` cfv 5456  (class class class)co 6083   lecple 13538   joincjn 14403   meetcmee 14404   Atomscatm 30123   HLchlt 30210   LHypclh 30843
This theorem is referenced by:  cdleme21d  31189  cdleme21e  31190  cdleme21j  31195
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-iin 4098  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-undef 6545  df-riota 6551  df-poset 14405  df-plt 14417  df-lub 14433  df-glb 14434  df-join 14435  df-meet 14436  df-p0 14470  df-p1 14471  df-lat 14477  df-clat 14539  df-oposet 30036  df-ol 30038  df-oml 30039  df-covers 30126  df-ats 30127  df-atl 30158  df-cvlat 30182  df-hlat 30211  df-llines 30357  df-lplanes 30358  df-lvols 30359  df-lines 30360  df-psubsp 30362  df-pmap 30363  df-padd 30655  df-lhyp 30847
  Copyright terms: Public domain W3C validator