Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme20j Structured version   Unicode version

Theorem cdleme20j 31052
Description: Part of proof of Lemma E in [Crawley] p. 113, last paragraph on p. 114.  D,  F,  Y,  G represent s2, f(s), t2, f(t). We show s2  =/= t2. (Contributed by NM, 18-Nov-2012.)
Hypotheses
Ref Expression
cdleme19.l  |-  .<_  =  ( le `  K )
cdleme19.j  |-  .\/  =  ( join `  K )
cdleme19.m  |-  ./\  =  ( meet `  K )
cdleme19.a  |-  A  =  ( Atoms `  K )
cdleme19.h  |-  H  =  ( LHyp `  K
)
cdleme19.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme19.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme19.g  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
cdleme19.d  |-  D  =  ( ( R  .\/  S )  ./\  W )
cdleme19.y  |-  Y  =  ( ( R  .\/  T )  ./\  W )
cdleme20.v  |-  V  =  ( ( S  .\/  T )  ./\  W )
Assertion
Ref Expression
cdleme20j  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  D  =/=  Y )

Proof of Theorem cdleme20j
StepHypRef Expression
1 simp33 995 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  -.  R  .<_  ( S 
.\/  T ) )
2 simp11l 1068 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  K  e.  HL )
3 simp22l 1076 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  S  e.  A )
4 simp21l 1074 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  R  e.  A )
5 eqid 2435 . . . . . . . . . . . 12  |-  ( Base `  K )  =  (
Base `  K )
6 cdleme19.j . . . . . . . . . . . 12  |-  .\/  =  ( join `  K )
7 cdleme19.a . . . . . . . . . . . 12  |-  A  =  ( Atoms `  K )
85, 6, 7hlatjcl 30101 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  R  e.  A  /\  S  e.  A )  ->  ( R  .\/  S
)  e.  ( Base `  K ) )
92, 4, 3, 8syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  -> 
( R  .\/  S
)  e.  ( Base `  K ) )
10 simp11r 1069 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  W  e.  H )
11 cdleme19.h . . . . . . . . . . . 12  |-  H  =  ( LHyp `  K
)
125, 11lhpbase 30732 . . . . . . . . . . 11  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
1310, 12syl 16 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  W  e.  ( Base `  K ) )
14 cdleme19.l . . . . . . . . . . . 12  |-  .<_  =  ( le `  K )
1514, 6, 7hlatlej2 30110 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  R  e.  A  /\  S  e.  A )  ->  S  .<_  ( R  .\/  S ) )
162, 4, 3, 15syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  S  .<_  ( R  .\/  S ) )
17 cdleme19.m . . . . . . . . . . 11  |-  ./\  =  ( meet `  K )
185, 14, 6, 17, 7atmod2i1 30595 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( S  e.  A  /\  ( R  .\/  S
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  /\  S  .<_  ( R  .\/  S
) )  ->  (
( ( R  .\/  S )  ./\  W )  .\/  S )  =  ( ( R  .\/  S
)  ./\  ( W  .\/  S ) ) )
192, 3, 9, 13, 16, 18syl131anc 1197 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  -> 
( ( ( R 
.\/  S )  ./\  W )  .\/  S )  =  ( ( R 
.\/  S )  ./\  ( W  .\/  S ) ) )
20 simp22 991 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  -> 
( S  e.  A  /\  -.  S  .<_  W ) )
21 eqid 2435 . . . . . . . . . . . 12  |-  ( 1.
`  K )  =  ( 1. `  K
)
2214, 6, 21, 7, 11lhpjat1 30754 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  -> 
( W  .\/  S
)  =  ( 1.
`  K ) )
232, 10, 20, 22syl21anc 1183 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  -> 
( W  .\/  S
)  =  ( 1.
`  K ) )
2423oveq2d 6089 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  -> 
( ( R  .\/  S )  ./\  ( W  .\/  S ) )  =  ( ( R  .\/  S )  ./\  ( 1. `  K ) ) )
25 hlol 30096 . . . . . . . . . . 11  |-  ( K  e.  HL  ->  K  e.  OL )
262, 25syl 16 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  K  e.  OL )
275, 17, 21olm11 29962 . . . . . . . . . 10  |-  ( ( K  e.  OL  /\  ( R  .\/  S )  e.  ( Base `  K
) )  ->  (
( R  .\/  S
)  ./\  ( 1. `  K ) )  =  ( R  .\/  S
) )
2826, 9, 27syl2anc 643 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  -> 
( ( R  .\/  S )  ./\  ( 1. `  K ) )  =  ( R  .\/  S
) )
2919, 24, 283eqtrd 2471 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  -> 
( ( ( R 
.\/  S )  ./\  W )  .\/  S )  =  ( R  .\/  S ) )
3029adantr 452 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  /\  D  =  Y )  ->  ( ( ( R 
.\/  S )  ./\  W )  .\/  S )  =  ( R  .\/  S ) )
31 cdleme19.d . . . . . . . . . 10  |-  D  =  ( ( R  .\/  S )  ./\  W )
32 cdleme20.v . . . . . . . . . . 11  |-  V  =  ( ( S  .\/  T )  ./\  W )
33 simp1 957 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  -> 
( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
34 simp23 992 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  -> 
( T  e.  A  /\  -.  T  .<_  W ) )
35 simp21 990 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  -> 
( R  e.  A  /\  -.  R  .<_  W ) )
36 simp31 993 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  -> 
( P  =/=  Q  /\  S  =/=  T
) )
37 simp321 1107 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  -.  S  .<_  ( P 
.\/  Q ) )
38 simp322 1108 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  -.  T  .<_  ( P 
.\/  Q ) )
3937, 38jca 519 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  -> 
( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q ) ) )
40 simp323 1109 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  R  .<_  ( P  .\/  Q ) )
41 cdleme19.u . . . . . . . . . . . . . . . . 17  |-  U  =  ( ( P  .\/  Q )  ./\  W )
42 cdleme19.f . . . . . . . . . . . . . . . . 17  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
43 cdleme19.g . . . . . . . . . . . . . . . . 17  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
44 cdleme19.y . . . . . . . . . . . . . . . . 17  |-  Y  =  ( ( R  .\/  T )  ./\  W )
4514, 6, 17, 7, 11, 41, 42, 43, 31, 44, 32cdleme20d 31046 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q ) )  /\  R  .<_  ( P  .\/  Q
) ) )  -> 
( ( F  .\/  G )  ./\  ( D  .\/  Y ) )  =  V )
4633, 20, 34, 35, 36, 39, 40, 45syl133anc 1207 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  -> 
( ( F  .\/  G )  ./\  ( D  .\/  Y ) )  =  V )
47 hllat 30098 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  HL  ->  K  e.  Lat )
482, 47syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  K  e.  Lat )
49 simp12l 1070 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  P  e.  A )
50 simp13l 1072 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  Q  e.  A )
5114, 6, 17, 7, 11, 41, 42, 5cdleme1b 30960 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  S  e.  A ) )  ->  F  e.  ( Base `  K ) )
522, 10, 49, 50, 3, 51syl23anc 1191 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  F  e.  ( Base `  K ) )
53 simp23l 1078 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  T  e.  A )
5414, 6, 17, 7, 11, 41, 43, 5cdleme1b 30960 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  T  e.  A ) )  ->  G  e.  ( Base `  K ) )
552, 10, 49, 50, 53, 54syl23anc 1191 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  G  e.  ( Base `  K ) )
565, 6latjcl 14471 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  Lat  /\  F  e.  ( Base `  K )  /\  G  e.  ( Base `  K
) )  ->  ( F  .\/  G )  e.  ( Base `  K
) )
5748, 52, 55, 56syl3anc 1184 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  -> 
( F  .\/  G
)  e.  ( Base `  K ) )
58 simp22r 1077 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  -.  S  .<_  W )
5914, 6, 17, 7, 11, 31cdlemeda 31032 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( R  e.  A  /\  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  D  e.  A )
602, 10, 3, 58, 4, 40, 37, 59syl223anc 1210 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  D  e.  A )
61 simp23r 1079 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  -.  T  .<_  W )
6214, 6, 17, 7, 11, 44cdlemeda 31032 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( R  e.  A  /\  R  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q
) ) )  ->  Y  e.  A )
632, 10, 53, 61, 4, 40, 38, 62syl223anc 1210 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  Y  e.  A )
645, 6, 7hlatjcl 30101 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  HL  /\  D  e.  A  /\  Y  e.  A )  ->  ( D  .\/  Y
)  e.  ( Base `  K ) )
652, 60, 63, 64syl3anc 1184 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  -> 
( D  .\/  Y
)  e.  ( Base `  K ) )
665, 14, 17latmle2 14498 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  Lat  /\  ( F  .\/  G )  e.  ( Base `  K
)  /\  ( D  .\/  Y )  e.  (
Base `  K )
)  ->  ( ( F  .\/  G )  ./\  ( D  .\/  Y ) )  .<_  ( D  .\/  Y ) )
6748, 57, 65, 66syl3anc 1184 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  -> 
( ( F  .\/  G )  ./\  ( D  .\/  Y ) )  .<_  ( D  .\/  Y ) )
6846, 67eqbrtrrd 4226 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  V  .<_  ( D  .\/  Y ) )
6968adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  /\  D  =  Y )  ->  V  .<_  ( D  .\/  Y ) )
706, 7hlatjidm 30103 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  D  e.  A )  ->  ( D  .\/  D
)  =  D )
712, 60, 70syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  -> 
( D  .\/  D
)  =  D )
72 oveq2 6081 . . . . . . . . . . . . . 14  |-  ( D  =  Y  ->  ( D  .\/  D )  =  ( D  .\/  Y
) )
7371, 72sylan9req 2488 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  /\  D  =  Y )  ->  D  =  ( D 
.\/  Y ) )
7469, 73breqtrrd 4230 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  /\  D  =  Y )  ->  V  .<_  D )
75 hlatl 30095 . . . . . . . . . . . . . . 15  |-  ( K  e.  HL  ->  K  e.  AtLat )
762, 75syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  K  e.  AtLat )
77 simp31r 1081 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  S  =/=  T )
7814, 6, 17, 7, 11, 32lhpat2 30779 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  S  =/=  T ) )  ->  V  e.  A
)
792, 10, 3, 58, 53, 77, 78syl222anc 1200 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  V  e.  A )
8014, 7atcmp 30046 . . . . . . . . . . . . . 14  |-  ( ( K  e.  AtLat  /\  V  e.  A  /\  D  e.  A )  ->  ( V  .<_  D  <->  V  =  D ) )
8176, 79, 60, 80syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  -> 
( V  .<_  D  <->  V  =  D ) )
8281adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  /\  D  =  Y )  ->  ( V  .<_  D  <->  V  =  D ) )
8374, 82mpbid 202 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  /\  D  =  Y )  ->  V  =  D )
8432, 83syl5reqr 2482 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  /\  D  =  Y )  ->  D  =  ( ( S  .\/  T ) 
./\  W ) )
8531, 84syl5eqr 2481 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  /\  D  =  Y )  ->  ( ( R  .\/  S )  ./\  W )  =  ( ( S 
.\/  T )  ./\  W ) )
865, 6, 7hlatjcl 30101 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  S  e.  A  /\  T  e.  A )  ->  ( S  .\/  T
)  e.  ( Base `  K ) )
872, 3, 53, 86syl3anc 1184 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  -> 
( S  .\/  T
)  e.  ( Base `  K ) )
885, 14, 17latmle1 14497 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  ( S  .\/  T )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( S  .\/  T )  ./\  W )  .<_  ( S  .\/  T ) )
8948, 87, 13, 88syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  -> 
( ( S  .\/  T )  ./\  W )  .<_  ( S  .\/  T
) )
9089adantr 452 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  /\  D  =  Y )  ->  ( ( S  .\/  T )  ./\  W )  .<_  ( S  .\/  T
) )
9185, 90eqbrtrd 4224 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  /\  D  =  Y )  ->  ( ( R  .\/  S )  ./\  W )  .<_  ( S  .\/  T
) )
9214, 6, 7hlatlej1 30109 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  S  e.  A  /\  T  e.  A )  ->  S  .<_  ( S  .\/  T ) )
932, 3, 53, 92syl3anc 1184 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  S  .<_  ( S  .\/  T ) )
9493adantr 452 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  /\  D  =  Y )  ->  S  .<_  ( S  .\/  T ) )
955, 17latmcl 14472 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  ( R  .\/  S )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( R  .\/  S )  ./\  W )  e.  ( Base `  K ) )
9648, 9, 13, 95syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  -> 
( ( R  .\/  S )  ./\  W )  e.  ( Base `  K
) )
975, 7atbase 30024 . . . . . . . . . . 11  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
983, 97syl 16 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  S  e.  ( Base `  K ) )
995, 14, 6latjle12 14483 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  ( ( ( R 
.\/  S )  ./\  W )  e.  ( Base `  K )  /\  S  e.  ( Base `  K
)  /\  ( S  .\/  T )  e.  (
Base `  K )
) )  ->  (
( ( ( R 
.\/  S )  ./\  W )  .<_  ( S  .\/  T )  /\  S  .<_  ( S  .\/  T
) )  <->  ( (
( R  .\/  S
)  ./\  W )  .\/  S )  .<_  ( S 
.\/  T ) ) )
10048, 96, 98, 87, 99syl13anc 1186 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  -> 
( ( ( ( R  .\/  S ) 
./\  W )  .<_  ( S  .\/  T )  /\  S  .<_  ( S 
.\/  T ) )  <-> 
( ( ( R 
.\/  S )  ./\  W )  .\/  S ) 
.<_  ( S  .\/  T
) ) )
101100adantr 452 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  /\  D  =  Y )  ->  ( ( ( ( R  .\/  S ) 
./\  W )  .<_  ( S  .\/  T )  /\  S  .<_  ( S 
.\/  T ) )  <-> 
( ( ( R 
.\/  S )  ./\  W )  .\/  S ) 
.<_  ( S  .\/  T
) ) )
10291, 94, 101mpbi2and 888 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  /\  D  =  Y )  ->  ( ( ( R 
.\/  S )  ./\  W )  .\/  S ) 
.<_  ( S  .\/  T
) )
10330, 102eqbrtrrd 4226 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  /\  D  =  Y )  ->  ( R  .\/  S
)  .<_  ( S  .\/  T ) )
1045, 7atbase 30024 . . . . . . . . 9  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
1054, 104syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  R  e.  ( Base `  K ) )
1065, 14, 6latjle12 14483 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( R  e.  ( Base `  K )  /\  S  e.  ( Base `  K )  /\  ( S  .\/  T )  e.  ( Base `  K
) ) )  -> 
( ( R  .<_  ( S  .\/  T )  /\  S  .<_  ( S 
.\/  T ) )  <-> 
( R  .\/  S
)  .<_  ( S  .\/  T ) ) )
10748, 105, 98, 87, 106syl13anc 1186 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  -> 
( ( R  .<_  ( S  .\/  T )  /\  S  .<_  ( S 
.\/  T ) )  <-> 
( R  .\/  S
)  .<_  ( S  .\/  T ) ) )
108107adantr 452 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  /\  D  =  Y )  ->  ( ( R  .<_  ( S  .\/  T )  /\  S  .<_  ( S 
.\/  T ) )  <-> 
( R  .\/  S
)  .<_  ( S  .\/  T ) ) )
109103, 108mpbird 224 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  /\  D  =  Y )  ->  ( R  .<_  ( S 
.\/  T )  /\  S  .<_  ( S  .\/  T ) ) )
110109simpld 446 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  /\  D  =  Y )  ->  R  .<_  ( S  .\/  T ) )
111110ex 424 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  -> 
( D  =  Y  ->  R  .<_  ( S 
.\/  T ) ) )
112111necon3bd 2635 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  -> 
( -.  R  .<_  ( S  .\/  T )  ->  D  =/=  Y
) )
1131, 112mpd 15 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( ( P  =/= 
Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  /\  -.  R  .<_  ( S  .\/  T
) ) )  ->  D  =/=  Y )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   Basecbs 13461   lecple 13528   joincjn 14393   meetcmee 14394   1.cp1 14459   Latclat 14466   OLcol 29909   Atomscatm 29998   AtLatcal 29999   HLchlt 30085   LHypclh 30718
This theorem is referenced by:  cdleme20l2  31055
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-poset 14395  df-plt 14407  df-lub 14423  df-glb 14424  df-join 14425  df-meet 14426  df-p0 14460  df-p1 14461  df-lat 14467  df-clat 14529  df-oposet 29911  df-ol 29913  df-oml 29914  df-covers 30001  df-ats 30002  df-atl 30033  df-cvlat 30057  df-hlat 30086  df-llines 30232  df-lplanes 30233  df-lvols 30234  df-lines 30235  df-psubsp 30237  df-pmap 30238  df-padd 30530  df-lhyp 30722
  Copyright terms: Public domain W3C validator