Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme21i Unicode version

Theorem cdleme21i 30524
Description: Part of proof of Lemma E in [Crawley] p. 115. (Contributed by NM, 29-Nov-2012.)
Hypotheses
Ref Expression
cdleme21.l  |-  .<_  =  ( le `  K )
cdleme21.j  |-  .\/  =  ( join `  K )
cdleme21.m  |-  ./\  =  ( meet `  K )
cdleme21.a  |-  A  =  ( Atoms `  K )
cdleme21.h  |-  H  =  ( LHyp `  K
)
cdleme21.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme21.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme21g.g  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
cdleme21g.d  |-  D  =  ( ( R  .\/  S )  ./\  W )
cdleme21g.y  |-  Y  =  ( ( R  .\/  T )  ./\  W )
cdleme21g.n  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  D ) )
cdleme21g.o  |-  O  =  ( ( P  .\/  Q )  ./\  ( G  .\/  Y ) )
Assertion
Ref Expression
cdleme21i  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  -> 
( E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) )  ->  N  =  O ) )
Distinct variable groups:    A, r    F, r    G, r    H, r    .\/ , r    K, r    .<_ , r    ./\ , r    P, r    Q, r    R, r    S, r    T, r    W, r
Allowed substitution hints:    D( r)    U( r)    N( r)    O( r)    Y( r)

Proof of Theorem cdleme21i
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 simpl11 1030 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp12 986 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
3 simp13 987 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  -> 
( Q  e.  A  /\  -.  Q  .<_  W ) )
4 simp21l 1072 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  ->  S  e.  A )
52, 3, 43jca 1132 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  -> 
( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
) )
65adantr 451 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  ->  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
) )
7 simp231 1099 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  ->  P  =/=  Q )
87adantr 451 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  ->  P  =/=  Q
)
9 simp232 1100 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  ->  -.  S  .<_  ( P 
.\/  Q ) )
109adantr 451 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  ->  -.  S  .<_  ( P  .\/  Q ) )
11 simpr 447 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  ->  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )
12 cdleme21.l . . . . 5  |-  .<_  =  ( le `  K )
13 cdleme21.j . . . . 5  |-  .\/  =  ( join `  K )
14 cdleme21.a . . . . 5  |-  A  =  ( Atoms `  K )
15 cdleme21.h . . . . 5  |-  H  =  ( LHyp `  K
)
1612, 13, 14, 154atexlem7 30264 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )
171, 6, 8, 10, 11, 16syl113anc 1194 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )
1817ex 423 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  -> 
( E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z
) ) ) )
19 cdleme21.m . . 3  |-  ./\  =  ( meet `  K )
20 cdleme21.u . . 3  |-  U  =  ( ( P  .\/  Q )  ./\  W )
21 cdleme21.f . . 3  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
22 cdleme21g.g . . 3  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
23 cdleme21g.d . . 3  |-  D  =  ( ( R  .\/  S )  ./\  W )
24 cdleme21g.y . . 3  |-  Y  =  ( ( R  .\/  T )  ./\  W )
25 cdleme21g.n . . 3  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  D ) )
26 cdleme21g.o . . 3  |-  O  =  ( ( P  .\/  Q )  ./\  ( G  .\/  Y ) )
2712, 13, 19, 14, 15, 20, 21, 22, 23, 24, 25, 26cdleme21h 30523 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  -> 
( E. z  e.  A  ( -.  z  .<_  W  /\  ( P 
.\/  z )  =  ( S  .\/  z
) )  ->  N  =  O ) )
2818, 27syld 40 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  -.  S  .<_  ( P  .\/  Q
)  /\  -.  T  .<_  ( P  .\/  Q
) ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( R  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) ) )  -> 
( E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) )  ->  N  =  O ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   lecple 13215   joincjn 14078   meetcmee 14079   Atomscatm 29453   HLchlt 29540   LHypclh 30173
This theorem is referenced by:  cdleme21j  30525
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-llines 29687  df-lplanes 29688  df-lvols 29689  df-lines 29690  df-psubsp 29692  df-pmap 29693  df-padd 29985  df-lhyp 30177
  Copyright terms: Public domain W3C validator