Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme23b Structured version   Unicode version

Theorem cdleme23b 31084
Description: Part of proof of Lemma E in [Crawley] p. 113, 4th paragraph, 6th line on p. 115. (Contributed by NM, 8-Dec-2012.)
Hypotheses
Ref Expression
cdleme23.b  |-  B  =  ( Base `  K
)
cdleme23.l  |-  .<_  =  ( le `  K )
cdleme23.j  |-  .\/  =  ( join `  K )
cdleme23.m  |-  ./\  =  ( meet `  K )
cdleme23.a  |-  A  =  ( Atoms `  K )
cdleme23.h  |-  H  =  ( LHyp `  K
)
cdleme23.v  |-  V  =  ( ( S  .\/  T )  ./\  ( X  ./\ 
W ) )
Assertion
Ref Expression
cdleme23b  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  V  e.  A )

Proof of Theorem cdleme23b
StepHypRef Expression
1 cdleme23.v . 2  |-  V  =  ( ( S  .\/  T )  ./\  ( X  ./\ 
W ) )
2 simp11l 1068 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  K  e.  HL )
3 hlol 30096 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  OL )
42, 3syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  K  e.  OL )
5 simp12l 1070 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  S  e.  A )
6 simp13l 1072 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  T  e.  A )
7 cdleme23.b . . . . . . 7  |-  B  =  ( Base `  K
)
8 cdleme23.j . . . . . . 7  |-  .\/  =  ( join `  K )
9 cdleme23.a . . . . . . 7  |-  A  =  ( Atoms `  K )
107, 8, 9hlatjcl 30101 . . . . . 6  |-  ( ( K  e.  HL  /\  S  e.  A  /\  T  e.  A )  ->  ( S  .\/  T
)  e.  B )
112, 5, 6, 10syl3anc 1184 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( S  .\/  T )  e.  B
)
12 hllat 30098 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  Lat )
132, 12syl 16 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  K  e.  Lat )
14 simp2l 983 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  X  e.  B )
15 simp11r 1069 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  W  e.  H )
16 cdleme23.h . . . . . . . . 9  |-  H  =  ( LHyp `  K
)
177, 16lhpbase 30732 . . . . . . . 8  |-  ( W  e.  H  ->  W  e.  B )
1815, 17syl 16 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  W  e.  B )
19 cdleme23.m . . . . . . . 8  |-  ./\  =  ( meet `  K )
207, 19latmcl 14472 . . . . . . 7  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  W  e.  B )  ->  ( X  ./\  W
)  e.  B )
2113, 14, 18, 20syl3anc 1184 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( X  ./\ 
W )  e.  B
)
227, 8latjcl 14471 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( S  .\/  T )  e.  B  /\  ( X  ./\  W )  e.  B )  ->  (
( S  .\/  T
)  .\/  ( X  ./\ 
W ) )  e.  B )
2313, 11, 21, 22syl3anc 1184 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( ( S  .\/  T )  .\/  ( X  ./\  W ) )  e.  B )
247, 19latmassOLD 29964 . . . . 5  |-  ( ( K  e.  OL  /\  ( ( S  .\/  T )  e.  B  /\  ( ( S  .\/  T )  .\/  ( X 
./\  W ) )  e.  B  /\  W  e.  B ) )  -> 
( ( ( S 
.\/  T )  ./\  ( ( S  .\/  T )  .\/  ( X 
./\  W ) ) )  ./\  W )  =  ( ( S 
.\/  T )  ./\  ( ( ( S 
.\/  T )  .\/  ( X  ./\  W ) )  ./\  W )
) )
254, 11, 23, 18, 24syl13anc 1186 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( (
( S  .\/  T
)  ./\  ( ( S  .\/  T )  .\/  ( X  ./\  W ) ) )  ./\  W
)  =  ( ( S  .\/  T ) 
./\  ( ( ( S  .\/  T ) 
.\/  ( X  ./\  W ) )  ./\  W
) ) )
26 cdleme23.l . . . . . . . 8  |-  .<_  =  ( le `  K )
277, 26, 8latlej1 14481 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( S  .\/  T )  e.  B  /\  ( X  ./\  W )  e.  B )  ->  ( S  .\/  T )  .<_  ( ( S  .\/  T )  .\/  ( X 
./\  W ) ) )
2813, 11, 21, 27syl3anc 1184 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( S  .\/  T )  .<_  ( ( S  .\/  T ) 
.\/  ( X  ./\  W ) ) )
297, 26, 19latleeqm1 14500 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( S  .\/  T )  e.  B  /\  (
( S  .\/  T
)  .\/  ( X  ./\ 
W ) )  e.  B )  ->  (
( S  .\/  T
)  .<_  ( ( S 
.\/  T )  .\/  ( X  ./\  W ) )  <->  ( ( S 
.\/  T )  ./\  ( ( S  .\/  T )  .\/  ( X 
./\  W ) ) )  =  ( S 
.\/  T ) ) )
3013, 11, 23, 29syl3anc 1184 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( ( S  .\/  T )  .<_  ( ( S  .\/  T )  .\/  ( X 
./\  W ) )  <-> 
( ( S  .\/  T )  ./\  ( ( S  .\/  T )  .\/  ( X  ./\  W ) ) )  =  ( S  .\/  T ) ) )
3128, 30mpbid 202 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( ( S  .\/  T )  ./\  ( ( S  .\/  T )  .\/  ( X 
./\  W ) ) )  =  ( S 
.\/  T ) )
3231oveq1d 6088 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( (
( S  .\/  T
)  ./\  ( ( S  .\/  T )  .\/  ( X  ./\  W ) ) )  ./\  W
)  =  ( ( S  .\/  T ) 
./\  W ) )
337, 9atbase 30024 . . . . . . . . 9  |-  ( S  e.  A  ->  S  e.  B )
345, 33syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  S  e.  B )
357, 9atbase 30024 . . . . . . . . 9  |-  ( T  e.  A  ->  T  e.  B )
366, 35syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  T  e.  B )
377, 8latjjdir 14525 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( S  e.  B  /\  T  e.  B  /\  ( X  ./\  W
)  e.  B ) )  ->  ( ( S  .\/  T )  .\/  ( X  ./\  W ) )  =  ( ( S  .\/  ( X 
./\  W ) ) 
.\/  ( T  .\/  ( X  ./\  W ) ) ) )
3813, 34, 36, 21, 37syl13anc 1186 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( ( S  .\/  T )  .\/  ( X  ./\  W ) )  =  ( ( S  .\/  ( X 
./\  W ) ) 
.\/  ( T  .\/  ( X  ./\  W ) ) ) )
39 simp32 994 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( S  .\/  ( X  ./\  W
) )  =  X )
40 simp33 995 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( T  .\/  ( X  ./\  W
) )  =  X )
4139, 40oveq12d 6091 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( ( S  .\/  ( X  ./\  W ) )  .\/  ( T  .\/  ( X  ./\  W ) ) )  =  ( X  .\/  X
) )
427, 8latjidm 14495 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  ( X  .\/  X
)  =  X )
4313, 14, 42syl2anc 643 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( X  .\/  X )  =  X )
4438, 41, 433eqtrd 2471 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( ( S  .\/  T )  .\/  ( X  ./\  W ) )  =  X )
4544oveq1d 6088 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( (
( S  .\/  T
)  .\/  ( X  ./\ 
W ) )  ./\  W )  =  ( X 
./\  W ) )
4645oveq2d 6089 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( ( S  .\/  T )  ./\  ( ( ( S 
.\/  T )  .\/  ( X  ./\  W ) )  ./\  W )
)  =  ( ( S  .\/  T ) 
./\  ( X  ./\  W ) ) )
4725, 32, 463eqtr3d 2475 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( ( S  .\/  T )  ./\  W )  =  ( ( S  .\/  T ) 
./\  ( X  ./\  W ) ) )
48 simp12r 1071 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  -.  S  .<_  W )
49 simp31 993 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  S  =/=  T )
5026, 8, 19, 9, 16lhpat 30777 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  S  =/=  T ) )  ->  ( ( S 
.\/  T )  ./\  W )  e.  A )
512, 15, 5, 48, 6, 49, 50syl222anc 1200 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( ( S  .\/  T )  ./\  W )  e.  A )
5247, 51eqeltrrd 2510 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( ( S  .\/  T )  ./\  ( X  ./\  W ) )  e.  A )
531, 52syl5eqel 2519 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( S  =/= 
T  /\  ( S  .\/  ( X  ./\  W
) )  =  X  /\  ( T  .\/  ( X  ./\  W ) )  =  X ) )  ->  V  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   Basecbs 13461   lecple 13528   joincjn 14393   meetcmee 14394   Latclat 14466   OLcol 29909   Atomscatm 29998   HLchlt 30085   LHypclh 30718
This theorem is referenced by:  cdleme28a  31104
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-poset 14395  df-plt 14407  df-lub 14423  df-glb 14424  df-join 14425  df-meet 14426  df-p0 14460  df-p1 14461  df-lat 14467  df-clat 14529  df-oposet 29911  df-ol 29913  df-oml 29914  df-covers 30001  df-ats 30002  df-atl 30033  df-cvlat 30057  df-hlat 30086  df-lhyp 30722
  Copyright terms: Public domain W3C validator