Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme24 Structured version   Unicode version

Theorem cdleme24 31149
Description: Quantified version of cdleme21k 31135. (Contributed by NM, 26-Dec-2012.)
Hypotheses
Ref Expression
cdleme24.b  |-  B  =  ( Base `  K
)
cdleme24.l  |-  .<_  =  ( le `  K )
cdleme24.j  |-  .\/  =  ( join `  K )
cdleme24.m  |-  ./\  =  ( meet `  K )
cdleme24.a  |-  A  =  ( Atoms `  K )
cdleme24.h  |-  H  =  ( LHyp `  K
)
cdleme24.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme24.f  |-  F  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
cdleme24.n  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( R  .\/  s )  ./\  W
) ) )
cdleme24.g  |-  G  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdleme24.o  |-  O  =  ( ( P  .\/  Q )  ./\  ( G  .\/  ( ( R  .\/  t )  ./\  W
) ) )
Assertion
Ref Expression
cdleme24  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  ->  A. s  e.  A  A. t  e.  A  ( (
( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q ) )  /\  ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) ) )  ->  N  =  O ) )
Distinct variable groups:    t, s, A    B, s, t    H, s, t    .\/ , s, t    K, s, t    .<_ , s, t    ./\ , s    P, s, t    Q, s, t    R, s, t    W, s, t
Allowed substitution hints:    U( t, s)    F( t, s)    G( t, s)    ./\ ( t)    N( t,
s)    O( t, s)

Proof of Theorem cdleme24
StepHypRef Expression
1 simp111 1086 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  /\  (
s  e.  A  /\  t  e.  A )  /\  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q
) )  /\  ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp112 1087 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  /\  (
s  e.  A  /\  t  e.  A )  /\  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q
) )  /\  ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
3 simp113 1088 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  /\  (
s  e.  A  /\  t  e.  A )  /\  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q
) )  /\  ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
4 simp12 988 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  /\  (
s  e.  A  /\  t  e.  A )  /\  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q
) )  /\  ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) ) ) )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
5 simp2l 983 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  /\  (
s  e.  A  /\  t  e.  A )  /\  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q
) )  /\  ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) ) ) )  ->  s  e.  A )
6 simp3ll 1028 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  /\  (
s  e.  A  /\  t  e.  A )  /\  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q
) )  /\  ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) ) ) )  ->  -.  s  .<_  W )
75, 6jca 519 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  /\  (
s  e.  A  /\  t  e.  A )  /\  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q
) )  /\  ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) ) ) )  ->  (
s  e.  A  /\  -.  s  .<_  W ) )
8 simp2r 984 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  /\  (
s  e.  A  /\  t  e.  A )  /\  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q
) )  /\  ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) ) ) )  ->  t  e.  A )
9 simp3rl 1030 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  /\  (
s  e.  A  /\  t  e.  A )  /\  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q
) )  /\  ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) ) ) )  ->  -.  t  .<_  W )
108, 9jca 519 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  /\  (
s  e.  A  /\  t  e.  A )  /\  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q
) )  /\  ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) ) ) )  ->  (
t  e.  A  /\  -.  t  .<_  W ) )
11 simp13l 1072 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  /\  (
s  e.  A  /\  t  e.  A )  /\  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q
) )  /\  ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) ) ) )  ->  P  =/=  Q )
12 simp3lr 1029 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  /\  (
s  e.  A  /\  t  e.  A )  /\  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q
) )  /\  ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) ) ) )  ->  -.  s  .<_  ( P  .\/  Q ) )
13 simp3rr 1031 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  /\  (
s  e.  A  /\  t  e.  A )  /\  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q
) )  /\  ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) ) ) )  ->  -.  t  .<_  ( P  .\/  Q ) )
14 simp13r 1073 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  /\  (
s  e.  A  /\  t  e.  A )  /\  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q
) )  /\  ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) ) ) )  ->  R  .<_  ( P  .\/  Q
) )
1512, 13, 143jca 1134 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  /\  (
s  e.  A  /\  t  e.  A )  /\  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q
) )  /\  ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) ) ) )  ->  ( -.  s  .<_  ( P 
.\/  Q )  /\  -.  t  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )
16 cdleme24.l . . . . 5  |-  .<_  =  ( le `  K )
17 cdleme24.j . . . . 5  |-  .\/  =  ( join `  K )
18 cdleme24.m . . . . 5  |-  ./\  =  ( meet `  K )
19 cdleme24.a . . . . 5  |-  A  =  ( Atoms `  K )
20 cdleme24.h . . . . 5  |-  H  =  ( LHyp `  K
)
21 cdleme24.u . . . . 5  |-  U  =  ( ( P  .\/  Q )  ./\  W )
22 cdleme24.f . . . . 5  |-  F  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
23 cdleme24.g . . . . 5  |-  G  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
24 eqid 2436 . . . . 5  |-  ( ( R  .\/  s ) 
./\  W )  =  ( ( R  .\/  s )  ./\  W
)
25 eqid 2436 . . . . 5  |-  ( ( R  .\/  t ) 
./\  W )  =  ( ( R  .\/  t )  ./\  W
)
26 cdleme24.n . . . . 5  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( R  .\/  s )  ./\  W
) ) )
27 cdleme24.o . . . . 5  |-  O  =  ( ( P  .\/  Q )  ./\  ( G  .\/  ( ( R  .\/  t )  ./\  W
) ) )
2816, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27cdleme21k 31135 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  (
s  e.  A  /\  -.  s  .<_  W )  /\  ( t  e.  A  /\  -.  t  .<_  W ) )  /\  ( P  =/=  Q  /\  ( -.  s  .<_  ( P  .\/  Q )  /\  -.  t  .<_  ( P  .\/  Q )  /\  R  .<_  ( P 
.\/  Q ) ) ) )  ->  N  =  O )
291, 2, 3, 4, 7, 10, 11, 15, 28syl332anc 1215 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  /\  (
s  e.  A  /\  t  e.  A )  /\  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q
) )  /\  ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) ) ) )  ->  N  =  O )
30293exp 1152 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  ->  (
( s  e.  A  /\  t  e.  A
)  ->  ( (
( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q ) )  /\  ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) ) )  ->  N  =  O ) ) )
3130ralrimivv 2797 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  ->  A. s  e.  A  A. t  e.  A  ( (
( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q ) )  /\  ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) ) )  ->  N  =  O ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2599   A.wral 2705   class class class wbr 4212   ` cfv 5454  (class class class)co 6081   Basecbs 13469   lecple 13536   joincjn 14401   meetcmee 14402   Atomscatm 30061   HLchlt 30148   LHypclh 30781
This theorem is referenced by:  cdleme25b  31151
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-undef 6543  df-riota 6549  df-poset 14403  df-plt 14415  df-lub 14431  df-glb 14432  df-join 14433  df-meet 14434  df-p0 14468  df-p1 14469  df-lat 14475  df-clat 14537  df-oposet 29974  df-ol 29976  df-oml 29977  df-covers 30064  df-ats 30065  df-atl 30096  df-cvlat 30120  df-hlat 30149  df-llines 30295  df-lplanes 30296  df-lvols 30297  df-lines 30298  df-psubsp 30300  df-pmap 30301  df-padd 30593  df-lhyp 30785
  Copyright terms: Public domain W3C validator