Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme25dN Unicode version

Theorem cdleme25dN 30471
Description: Transform cdleme25c 30470. (Contributed by NM, 19-Jan-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme24.b  |-  B  =  ( Base `  K
)
cdleme24.l  |-  .<_  =  ( le `  K )
cdleme24.j  |-  .\/  =  ( join `  K )
cdleme24.m  |-  ./\  =  ( meet `  K )
cdleme24.a  |-  A  =  ( Atoms `  K )
cdleme24.h  |-  H  =  ( LHyp `  K
)
cdleme24.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme24.f  |-  F  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
cdleme24.n  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( R  .\/  s )  ./\  W
) ) )
Assertion
Ref Expression
cdleme25dN  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  ->  E! u  e.  B  E. s  e.  A  (
( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q ) )  /\  u  =  N ) )
Distinct variable groups:    u, s, A    B, s, u    H, s    .\/ , s, u    K, s   
.<_ , s, u    ./\ , s, u    P, s, u    Q, s, u    R, s, u    W, s, u    u, N    U, s, u
Allowed substitution hints:    F( u, s)    H( u)    K( u)    N( s)

Proof of Theorem cdleme25dN
StepHypRef Expression
1 cdleme24.b . . 3  |-  B  =  ( Base `  K
)
2 cdleme24.l . . 3  |-  .<_  =  ( le `  K )
3 cdleme24.j . . 3  |-  .\/  =  ( join `  K )
4 cdleme24.m . . 3  |-  ./\  =  ( meet `  K )
5 cdleme24.a . . 3  |-  A  =  ( Atoms `  K )
6 cdleme24.h . . 3  |-  H  =  ( LHyp `  K
)
7 cdleme24.u . . 3  |-  U  =  ( ( P  .\/  Q )  ./\  W )
8 cdleme24.f . . 3  |-  F  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
9 cdleme24.n . . 3  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( R  .\/  s )  ./\  W
) ) )
101, 2, 3, 4, 5, 6, 7, 8, 9cdleme25c 30470 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  ->  E! u  e.  B  A. s  e.  A  (
( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q ) )  ->  u  =  N ) )
11 simp11l 1068 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  ->  K  e.  HL )
1211adantr 452 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  /\  s  e.  A )  ->  K  e.  HL )
13 simp11r 1069 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  ->  W  e.  H )
1413adantr 452 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  /\  s  e.  A )  ->  W  e.  H )
15 simp12l 1070 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  ->  P  e.  A )
1615adantr 452 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  /\  s  e.  A )  ->  P  e.  A )
17 simp13l 1072 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  ->  Q  e.  A )
1817adantr 452 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  /\  s  e.  A )  ->  Q  e.  A )
19 simpl2l 1010 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  /\  s  e.  A )  ->  R  e.  A )
20 simpr 448 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  /\  s  e.  A )  ->  s  e.  A )
212, 3, 4, 5, 6, 7, 8, 9, 1cdleme22gb 30409 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  s  e.  A )
)  ->  N  e.  B )
2212, 14, 16, 18, 19, 20, 21syl222anc 1200 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  /\  s  e.  A )  ->  N  e.  B )
2322ex 424 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  ->  (
s  e.  A  ->  N  e.  B )
)
2423a1dd 44 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  ->  (
s  e.  A  -> 
( ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q
) )  ->  N  e.  B ) ) )
2524ralrimiv 2732 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  ->  A. s  e.  A  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) )  ->  N  e.  B
) )
26 simp12 988 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
27 simp13 989 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
28 simp3l 985 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  ->  P  =/=  Q )
292, 3, 5, 6cdlemb2 30156 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/= 
Q )  ->  E. s  e.  A  ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q ) ) )
3011, 13, 26, 27, 28, 29syl221anc 1195 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  ->  E. s  e.  A  ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q ) ) )
31 reusv2 4670 . . 3  |-  ( ( A. s  e.  A  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q
) )  ->  N  e.  B )  /\  E. s  e.  A  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) )  ->  ( E! u  e.  B  E. s  e.  A  (
( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q ) )  /\  u  =  N )  <->  E! u  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) )  ->  u  =  N ) ) )
3225, 30, 31syl2anc 643 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( E! u  e.  B  E. s  e.  A  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q
) )  /\  u  =  N )  <->  E! u  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) )  ->  u  =  N ) ) )
3310, 32mpbird 224 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  ->  E! u  e.  B  E. s  e.  A  (
( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q ) )  /\  u  =  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2551   A.wral 2650   E.wrex 2651   E!wreu 2652   class class class wbr 4154   ` cfv 5395  (class class class)co 6021   Basecbs 13397   lecple 13464   joincjn 14329   meetcmee 14330   Atomscatm 29379   HLchlt 29466   LHypclh 30099
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-iun 4038  df-iin 4039  df-br 4155  df-opab 4209  df-mpt 4210  df-id 4440  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-undef 6480  df-riota 6486  df-poset 14331  df-plt 14343  df-lub 14359  df-glb 14360  df-join 14361  df-meet 14362  df-p0 14396  df-p1 14397  df-lat 14403  df-clat 14465  df-oposet 29292  df-ol 29294  df-oml 29295  df-covers 29382  df-ats 29383  df-atl 29414  df-cvlat 29438  df-hlat 29467  df-llines 29613  df-lplanes 29614  df-lvols 29615  df-lines 29616  df-psubsp 29618  df-pmap 29619  df-padd 29911  df-lhyp 30103
  Copyright terms: Public domain W3C validator