Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme32snaw Structured version   Unicode version

Theorem cdleme32snaw 31306
Description: Show that  [_ R  /  s ]_ N is an atom not under  W. (Contributed by NM, 6-Mar-2013.)
Hypotheses
Ref Expression
cdleme32.b  |-  B  =  ( Base `  K
)
cdleme32.l  |-  .<_  =  ( le `  K )
cdleme32.j  |-  .\/  =  ( join `  K )
cdleme32.m  |-  ./\  =  ( meet `  K )
cdleme32.a  |-  A  =  ( Atoms `  K )
cdleme32.h  |-  H  =  ( LHyp `  K
)
cdleme32.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme32.c  |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
cdleme32.d  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdleme32.e  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
cdleme32.i  |-  I  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  E ) )
cdleme32.n  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C
)
Assertion
Ref Expression
cdleme32snaw  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( [_ R  /  s ]_ N  e.  A  /\  -.  [_ R  / 
s ]_ N  .<_  W ) )
Distinct variable groups:    t, s,
y, A    B, s,
t, y    y, C    D, s, y    y, E    H, s, t    .\/ , s,
t, y    K, s,
t    .<_ , s, t, y    ./\ , s, t, y    P, s, t, y    Q, s, t, y    U, s, t, y    W, s, t, y    R, s, t, y    y, H   
y, K
Allowed substitution hints:    C( t, s)    D( t)    E( t, s)    I( y, t, s)    N( y, t, s)

Proof of Theorem cdleme32snaw
StepHypRef Expression
1 cdleme32.b . . . 4  |-  B  =  ( Base `  K
)
2 cdleme32.l . . . 4  |-  .<_  =  ( le `  K )
3 cdleme32.j . . . 4  |-  .\/  =  ( join `  K )
4 cdleme32.m . . . 4  |-  ./\  =  ( meet `  K )
5 cdleme32.a . . . 4  |-  A  =  ( Atoms `  K )
6 cdleme32.h . . . 4  |-  H  =  ( LHyp `  K
)
7 cdleme32.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
8 cdleme32.d . . . 4  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
9 cdleme32.e . . . 4  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
10 cdleme32.i . . . 4  |-  I  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  E ) )
11 cdleme32.n . . . 4  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C
)
12 eqid 2438 . . . 4  |-  ( ( P  .\/  Q ) 
./\  ( D  .\/  ( ( R  .\/  t )  ./\  W
) ) )  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( R  .\/  t )  ./\  W
) ) )
13 eqid 2438 . . . 4  |-  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  ( ( P  .\/  Q
)  ./\  ( D  .\/  ( ( R  .\/  t )  ./\  W
) ) ) ) )  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  ( ( P  .\/  Q
)  ./\  ( D  .\/  ( ( R  .\/  t )  ./\  W
) ) ) ) )
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13cdlemefs32sn1aw 31285 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  ( [_ R  /  s ]_ N  e.  A  /\  -.  [_ R  /  s ]_ N  .<_  W ) )
15143expa 1154 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  /\  R  .<_  ( P  .\/  Q
) )  ->  ( [_ R  /  s ]_ N  e.  A  /\  -.  [_ R  / 
s ]_ N  .<_  W ) )
16 cdleme32.c . . . 4  |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
171, 2, 3, 4, 5, 6, 7, 16, 11cdlemefr32sn2aw 31275 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  -.  R  .<_  ( P  .\/  Q
) )  ->  ( [_ R  /  s ]_ N  e.  A  /\  -.  [_ R  / 
s ]_ N  .<_  W ) )
18173expa 1154 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  /\  -.  R  .<_  ( P  .\/  Q ) )  ->  ( [_ R  /  s ]_ N  e.  A  /\  -.  [_ R  / 
s ]_ N  .<_  W ) )
1915, 18pm2.61dan 768 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( [_ R  /  s ]_ N  e.  A  /\  -.  [_ R  / 
s ]_ N  .<_  W ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   [_csb 3253   ifcif 3741   class class class wbr 4215   ` cfv 5457  (class class class)co 6084   iota_crio 6545   Basecbs 13474   lecple 13541   joincjn 14406   meetcmee 14407   Atomscatm 30135   HLchlt 30222   LHypclh 30855
This theorem is referenced by:  cdleme32snb  31307  cdleme32fvaw  31310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-iin 4098  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-undef 6546  df-riota 6552  df-poset 14408  df-plt 14420  df-lub 14436  df-glb 14437  df-join 14438  df-meet 14439  df-p0 14473  df-p1 14474  df-lat 14480  df-clat 14542  df-oposet 30048  df-ol 30050  df-oml 30051  df-covers 30138  df-ats 30139  df-atl 30170  df-cvlat 30194  df-hlat 30223  df-llines 30369  df-lplanes 30370  df-lvols 30371  df-lines 30372  df-psubsp 30374  df-pmap 30375  df-padd 30667  df-lhyp 30859
  Copyright terms: Public domain W3C validator